ãã®èšäºã§ã¯RLçŽååè·¯ã®ãã©ãã©ã¹å€æã«ããéæž¡çŸè±¡ã®è§£ãæ¹ãã«ã€ããŠèª¬æããŠããŸãã
åããããã説æããããã«ãå³ãå€ãçšããŠãããåŒã®å°åºéçšã现ããæžãããã«æèããŠããŸãã
ãRLçŽååè·¯ããéæž¡çŸè±¡ãã®åŒãšã°ã©ã
äžå³ã¯æµæ\(R{\mathrm{[Ω]}}\)ãã€ã³ãã¯ã¿\(L{\mathrm{[H]}}\)ãçŽæµé»æº\(E{\mathrm{[V]}}\)ãã¹ã€ãã\(SW\)ãããªãRLçŽååè·¯ã§ãã
ãã®èšäºã§ã¯ã以äžã®æ¡ä»¶ã«ããããéæž¡çŸè±¡ãã®åŒãå°åºããŸãã
æ¡ä»¶
- ã¹ã€ãã\(SW\)ããªã³ããæã®æé\(t\)ã\(t=0{\mathrm{[s]}}\)ãšããã
ã¹ã€ãã\(SW\)ããªã³ãããšã以äžã®éæž¡çŸè±¡ãçããŸãã
- é»æµ\(i(t)\)ã\(0{\mathrm{[A]}}\)ããå¢å ããã
- ããçšåºŠæéãçµéãããšãé»æµ\(i(t)\)ã®å€åããªããªããäžå®å€\(\displaystyle\frac{E}{R}{\mathrm{[A]}}\)ãšãªãããŸãããã®æãã€ã³ãã¯ã¿\(L\)ãç絡ããããããªç¶æ ã§ãããæµæ\(R\)ã®é»å§\(v_{R}(t)\)ãé»æºé»å§ã®é»å§\(E\)ãšçãããªãã
ãã®æãé»æµ\(i(t)\)ãäžå®å€\(\displaystyle\frac{E}{R}{\mathrm{[A]}}\)ãšãªã£ãç¶æ ããå®åžžç¶æ ãããå®åžžç¶æ ãã«è³ããŸã§ã®ç¶æ ããéæž¡ç¶æ ãããã®éçšã§èŠãããçŸç¶ããéæž¡çŸè±¡ããšãããŸãã
ãŸããRLçŽååè·¯ã«æµããé»æµ\(i(t)\)ãæµæ\(R\)ã®é»å§\(v_{R}(t)\)ãã€ã³ãã¯ã¿\(L\)ã®é»å§\(v_{L}(t)\)ã®åŒãšã°ã©ãã¯äžèšãšãªããŸãã
\begin{eqnarray}
i(t)&=&\frac{E}{R}\left(1-e^{-\frac{R}{L}t}\right)\\
v_{R}(t)&=&E\left(1-e^{-\frac{R}{L}t}\right)\\
v_{L}(t)&=&Ee^{-\frac{R}{L}t}
\end{eqnarray}
ãã®èšäºã§ã¯äžåŒãã©ãã©ã¹å€æãçšããŠè§£ããŠãããŸãããªããäžåŒã¯åŸ®åæ¹çšåŒã解ãæãåºæ¬çãªãã¿ãŒã³ã®å€æ°åé¢åœ¢ã®åŸ®åæ¹çšåŒã«ããŠãçŽæ¥è§£ãããšãå¯èœã§ãã
å€æ°åé¢åœ¢ã®åŸ®åæ¹çšåŒã«ããŠãçŽæ¥è§£ãæ¹æ³ã«ã€ããŠã¯ä»¥äžã®èšäºã«è©³ãã説æããŠããŸãã®ã§ãåèã«ããŠãã ããã
ãRLçŽååè·¯ã®åŸ®åæ¹çšåŒããéæž¡çŸè±¡ãã®è§£ãæ¹ïŒ
ç¶ããèŠã
ãRLçŽååè·¯ããã©ãã©ã¹å€æãã«ãã解ãæ¹
ã©ãã©ã¹å€æãçšããŠRLçŽååè·¯ã®éæž¡çŸè±¡ã解ãå Žåã以äžã®â ïœâ€ã®æé ã§è¡ããŸãã
ã©ãã©ã¹å€æã®æé
- åè·¯æ¹çšåŒãããŠã
- ã©ãã©ã¹å€æããsé åã®æ¹çšåŒã«ãã
- sé åã®æ¹çšåŒã解ã
- éšååæ°å解ãã
- ã©ãã©ã¹éå€æãã
â察象ãšãªãåè·¯(ä»åã¯RLçŽååè·¯)ã®té¢æ°ã«ããåè·¯æ¹çšåŒãããŠãŸãã
ââ ã§æ±ããåè·¯æ¹çšåŒãã©ãã©ã¹å€æããŠãsé åã®æ¹çšåŒã«ããŸãããã®éãåææ¡ä»¶ãèæ ®ããå¿ èŠããããŸãã
âæ±ãããsé¢æ°ã®åŒã«ããŸããä»åã¯ã\(I(s)={\cdots}\)ãã®åŒã«ããŸãã
âã©ãã©ã¹éå€æãããããã«ãâ¢ã§æ±ããåŒãéšååæ°å解ããŸãã
ââ£ã§æ±ããåŒãã©ãã©ã¹éå€æããŠãté åã®æ¹çšåŒã«ããŸãã
ã§ã¯ãããããåæé ã«ã€ããŠé çªã«èª¬æããŠãããŸãã
ãRLçŽååè·¯ãåè·¯æ¹çšåŒãããŠã
RLçŽååè·¯ãäžå³ã«ç€ºããŸãã
äžå³ã®RLçŽååè·¯ã«ãã«ããããã®é»å§å(ãã«ããããã®ç¬¬äºæ³å)ãçšãããšæ¬¡åŒãæãç«ã¡ãŸãã
\begin{eqnarray}
E=v_{R}(t)+v_{L}(t)\tag{1}
\end{eqnarray}
(1)åŒã«ãããŠãæµæ\(R\)ã®é»å§\(v_{R}(t)\)ãšã€ã³ãã¯ã¿\(L\)ã®é»å§\(v_{L}(t)\)ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
v_{R}(t)&=&Ri(t)\tag{2}\\
v_{L}(t)&=&L\frac{di(t)}{dt}\tag{3}
\end{eqnarray}
(2)åŒãš(3)åŒã(1)åŒã«ä»£å ¥ãããšã次åŒãåŸãããŸãã
\begin{eqnarray}
E&=&v_{R}(t)+v_{L}(t)\\
&=&Ri(t)+L\frac{di(t)}{dt}\tag{4}
\end{eqnarray}
äžåŒããRLçŽååè·¯ã®té åã®åè·¯æ¹çšåŒãšãªããŸãã
ãRLçŽååè·¯ãã©ãã©ã¹å€æããsé åã®æ¹çšåŒã«ãã
(4)åŒã®å·ŠèŸºã¯ã\(E=E{\;}{\cdot}{\;}1\)ãã§ããããã(4)åŒãã©ãã©ã¹å€æãããšã次åŒãšãªããŸãã
\begin{eqnarray}
E{\;}{\cdot}{\;}\frac{1}{s}=RI(s)+L\left(sI(s)-i(0)\right)\tag{5}
\end{eqnarray}
(5)åŒã«ãããŠãã\(i(0)\)ãã¯ã\(t=0\)ãã®æã«ãããRLçŽååè·¯ã«æµããé»æµã§ããã¹ã€ãã\(SW\)ããªã³ããåã¯ãRLçŽååè·¯ã«é»æµã¯æµããŠããªãããã次åŒãæãç«ã¡ãŸãã
\begin{eqnarray}
i(0)=0\tag{6}
\end{eqnarray}
(6)åŒã(5)åŒã«ä»£å ¥ãããšã次åŒãšãªããŸãã
\begin{eqnarray}
E{\;}{\cdot}{\;}\frac{1}{s}&=&RI(s)+L\left(sI(s)-0\right)\\
{\Leftrightarrow}\frac{E}{s}&=&RI(s)+sLI(s)\tag{7}
\end{eqnarray}
äžåŒããRLçŽååè·¯ã®sé åã®æ¹çšåŒãšãªããŸãã
ãRLçŽååè·¯ãsé åã®æ¹çšåŒã解ã
(7)åŒãã\(I(s)={\cdots}\)ãã®åŒã«å€æããŸãã
(7)åŒã\(I(s)\)ã§æŽçãããšã次åŒãšãªããŸãã
\begin{eqnarray}
\left(R+sL\right)I(s)=\frac{E}{s}\tag{8}
\end{eqnarray}
(8)åŒã®äž¡èŸºã\(R+sL\)ã§å²ããšæ¬¡åŒãšãªããŸãã
\begin{eqnarray}
I(s)&=&\frac{E}{s\left(R+sL\right)}\\
&=&\frac{E}{s\left(sL+R\right)}\tag{9}
\end{eqnarray}
(9)åŒã®å³èŸºã®ååãšåæ¯ã\(L\)ã§å²ããšæ¬¡åŒãšãªããŸãã
\begin{eqnarray}
I(s)&=&\frac{\displaystyle\frac{E}{L}}{s\left(s+\displaystyle\frac{R}{L}\right)}\\
&=&\frac{E}{L}\frac{1}{s\left(s+\displaystyle\frac{R}{L}\right)}\tag{10}
\end{eqnarray}
ãã®ããã«ãå€åœ¢ããããšã§ãã\(I(s)={\cdots}\)ãã«ããããšãã§ããŸãããªãã(10)åŒã¯ãã®åŸã«èª¬æããéšååæ°å解ãããããããã«å€åœ¢ããŠããŸãã
ãRLçŽååè·¯ãéšååæ°å解ãã
ã©ãã©ã¹éå€æãããããã«ã(10)åŒãéšååæ°å解ããŸãã
ãŸãã(10)åŒã®å³èŸºã®\(\displaystyle\frac{1}{s\left(s+\displaystyle\frac{R}{L}\right)}\)ã\(F(s)\)ãšçœ®ãã次åŒã®\(A\)ãš\(B\)ãæ±ããŸãã
\begin{eqnarray}
F(s)=\frac{1}{s\left(s+\displaystyle\frac{R}{L}\right)}=\frac{A}{s}+\frac{B}{s+\displaystyle\frac{R}{L}}\tag{11}
\end{eqnarray}
Aã®æ±ãæ¹
\(F(s)\)ã«\(A\)ã®åæ¯ã®ã\(s\)ããæããŸãããã®åŸã\(A\)ã®åæ¯ã®ã\(s\)ãããŒããšãªãæã®æ¡ä»¶ã\(s=0\)ããä»£å ¥ããããšã§\(A\)ãæ±ããããšãã§ããŸãã
åŒã§æžããšã次åŒã®ããã«ãªããŸãã
\begin{eqnarray}
A&=&\left[F(s)Ãs\right]_{s=0}\\
&=&\left[\frac{1}{s\left(s+\displaystyle\frac{R}{L}\right)}Ãs\right]_{s=0}\\
&=&\left[\frac{1}{s+\displaystyle\frac{R}{L}}\right]_{s=0}\\
&=&\frac{L}{R}\tag{12}
\end{eqnarray}
Bã®æ±ãæ¹
\(A\)ãšåæ§ã®æ¹æ³ã§\(B\)ãæ±ããããšãã§ããŸãã
\(F(s)\)ã«\(B\)ã®åæ¯ã®ã\(s+\displaystyle\frac{R}{L}\)ããæããŸãããã®åŸã\(B\)ã®åæ¯ã®ã\(s+\displaystyle\frac{R}{L}\)ãããŒããšãªãæã®æ¡ä»¶ã\(s=-\displaystyle\frac{R}{L}\)ããä»£å ¥ããããšã§\(A\)ãæ±ããããšãã§ããŸãã
åŒã§æžããšã次åŒã®ããã«ãªããŸãã
\begin{eqnarray}
A&=&\left[F(s)Ã\left(s+\displaystyle\frac{R}{L}\right)\right]_{s=-\frac{R}{L}}\\
&=&\left[\frac{1}{s\left(s+\displaystyle\frac{R}{L}\right)}Ã\left(s+\displaystyle\frac{R}{L}\right)\right]_{s=-\frac{R}{L}}\\
&=&\left[\frac{1}{s}\right]_{s=-\frac{R}{L}}\\
&=&-\frac{L}{R}\tag{13}
\end{eqnarray}
(12)åŒãš(13)åŒã(11)åŒã«ä»£å ¥ãããšã次åŒãšãªããŸãã
\begin{eqnarray}
\frac{1}{s\left(s+\displaystyle\frac{R}{L}\right)}&=&\frac{A}{s}+\frac{B}{s+\displaystyle\frac{R}{L}}\\
&=&\displaystyle\frac{\displaystyle\frac{L}{R}}{s}+\frac{-\displaystyle\frac{L}{R}}{s+\displaystyle\frac{R}{L}}\\
&=&\frac{L}{R}\left(\frac{1}{s}-\frac{1}{s+\displaystyle\frac{R}{L}}\right)\tag{14}
\end{eqnarray}
(14)åŒã(10)åŒã«ä»£å ¥ãããšã次åŒãšãªããŸãã
\begin{eqnarray}
I(s)&=&\frac{E}{L}\frac{1}{s\left(s+\displaystyle\frac{R}{L}\right)}\\
&=&\frac{E}{L}\frac{L}{R}\left(\frac{1}{s}-\frac{1}{s+\displaystyle\frac{R}{L}}\right)\\
&=&\frac{E}{R}\left(\frac{1}{s}-\frac{1}{s+\displaystyle\frac{R}{L}}\right)\tag{15}
\end{eqnarray}
ãã®ããã«ããŠãã©ãã©ã¹éå€æãã§ããåŒã«å€åœ¢ããŸãã
ãRLçŽååè·¯ãã©ãã©ã¹éå€æãã
(15)åŒãã©ãã©ã¹éå€æãããšã次åŒãšãªããŸãã
\begin{eqnarray}
i(t)&=&{\mathcal{L}}^{-1}\left[I(s)\right]\\
&=&{\mathcal{L}}^{-1}\left[\frac{E}{R}\left(\frac{1}{s}-\frac{1}{s+\displaystyle\frac{R}{L}}\right)\right]\\
&=&\frac{E}{R}{\mathcal{L}}^{-1}\left[\frac{1}{s}-\frac{1}{s+\displaystyle\frac{R}{L}}\right]\\
&=&\frac{E}{R}\left({\mathcal{L}}^{-1}\left[\frac{1}{s}\right]-{\mathcal{L}}^{-1}\left[\frac{1}{s+\displaystyle\frac{R}{L}}\right]\right)\\
&=&\frac{E}{R}\left(1-e^{-\frac{R}{L}t}\right)\tag{16}
\end{eqnarray}
以äžãããRLçŽååè·¯ã«æµããé»æµ\(i(t)\)ã®åŒãå°åºããããšãã§ããŸããã
RLçŽååè·¯ã«æµããé»æµ\(i(t)\)ãåãããšãæµæ\(R\)ã®é»å§\(v_{R}(t)\)ãç°¡åã«æ±ããããšãã§ããŸãã
(16)åŒã(2)åŒã«ä»£å ¥ãããšãæµæ\(R\)ã®é»å§\(v_{R}(t)\)ã¯æ¬¡åŒãšãªããŸãã
\begin{eqnarray}
v_{R}(t)&=&Ri(t)\\
&=&E\left(1-e^{-\frac{R}{L}t}\right)\tag{17}
\end{eqnarray}
ãŸãã(16)åŒã(3)åŒã«ä»£å ¥ãããšãã€ã³ãã¯ã¿\(L\)ã®é»å§\(v_{L}(t)\)ã¯æ¬¡åŒãšãªããŸãã
\begin{eqnarray}
v_{L}(t)&=&L\frac{di(t)}{dt}\\
&=&L\frac{d}{dt}\left[\frac{E}{R}\left(1-e^{-\frac{R}{L}t}\right)\right]\\
&=&L\frac{E}{R}\frac{d}{dt}\left(1-e^{-\frac{R}{L}t}\right)\\
&=&L\frac{E}{R}\left[\frac{d}{dt}\left(1\right)-\frac{d}{dt}\left(e^{-\frac{R}{L}t}\right)\right]\\
&=&L\frac{E}{R}\left[0-\left(-\frac{R}{L}e^{-\frac{R}{L}t}\right)\right]\\
&=&Ee^{-\frac{R}{L}t}\tag{18}
\end{eqnarray}
ãªããåã ã®åŒã®ã°ã©ãã«ã€ããŠã¯ä»¥äžã®èšäºã«è©³ãã説æããŠããŸãã®ã§ãåèã«ããŠãã ããã
-
ãRLçŽååè·¯ã®åŸ®åæ¹çšåŒããéæž¡çŸè±¡ãã®è§£ãæ¹ïŒ
ç¶ããèŠã
ãŸãšã
ãã®èšäºã§ã¯RLçŽååè·¯ã«ã€ããŠã以äžã®å 容ã説æããŸããã
åœèšäºã®ãŸãšã
- ãRLçŽååè·¯ããéæž¡çŸè±¡ãã®åŒãšã°ã©ã
- ãRLçŽååè·¯ããã©ãã©ã¹å€æãã®è§£ãæ¹
ãèªã¿é ãããããšãããããŸããã
åœãµã€ãã§ã¯é»æ°ã«é¢ããæ§ã
ãªæ
å ±ãèšèŒããŠããŸããåœãµã€ãã®å
šèšäºäžèŠ§ã«ã¯ä»¥äžã®ãã¿ã³ãã移åããããšãã§ããŸãã