ãã®èšäºã§ã¯RCåè·¯ã®æå®æ°ã«ã€ããŠ
- æå®æ°ã®éèŠãã€ã³ã
- æå®æ°Ï=CRã®æ±ãæ¹
- æå®æ°ã®åäœã[s]ãšãªãçç±
ãªã©ãå³ãçšããŠåããããã説æããŠããŸãã
RCåè·¯ã®æå®æ°
äžå³ã¯æµæ\(R{\mathrm{[Ω]}}\)ãã³ã³ãã³ãµ\(C{\mathrm{[F]}}\)ãçŽæµé»æº\(E{\mathrm{[V]}}\)ãã¹ã€ãã\(SW\)ãããªãRCåè·¯ã§ãã
äžå³ã®RCåè·¯ã«ãããŠãã\(t=0{\mathrm{[s]}}\)ãã§ã¹ã€ãã\(SW\)ãONã«ãããšã以äžã®éæž¡çŸè±¡ãçããŸãã
éæž¡çŸè±¡
- ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã\(0{\mathrm{[V]}}\)ããåŸã ã«äžæããã
- ããçšåºŠæéãçµéãããšãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã黿ºé»å§ã®é»å§\(E{\mathrm{[V]}}\)ãšçãããªãã
ããã§ãæå®æ°ã®ãã€ã³ãã«ã€ããŠãŸãšããŸã(åŸã§å³ãçšããŠåããããã説æããŸã)ã
æå®æ°ã®ãã€ã³ã
- æå®æ°ãšã¯ãéæž¡çŸè±¡ãã©ã®ãããç¶ãã®ãã衚ãç®å®ã衚ããŠãããåäœã¯[s]ãšãªããŸãã
- æå®æ°ã¯ãã®ãªã·ã£æåã®\({\tau}\)(ã¿ãŠ)ã§è¡šãããŸãã
- RCåè·¯ã®æå®æ°\({\tau}\)ã¯ãã³ã³ãã³ãµCãšæµæRã®ç©ãšãªãã\({\tau}=CR\)ããšãªããŸãã
- æé\(t\)ããæå®æ°\({\tau}(=CR)\)ããšãªã£ãæãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯ã\(0.632E\)ããšãªããŸãã
- æå®æ°\({\tau}\)ã倧ãããšéæž¡çŸè±¡ãé·ãç¶ããå°ãããšéæž¡çŸè±¡ãæ©ãçµãããŸã(æ©ãå®åžžç¶æ ã«ãªããŸã)ã
ã»ã»ã»å°ãã€ã¡ãŒãžãé£ããã§ãããã§ã¯ããããå³ãçšããŠåãããããæå®æ°ã®ãã€ã³ãã説æããŠãããŸãã
ããå°ã詳ããïŒ
ç¹°ãè¿ãã«ãªããŸãããäžå³ã®RCåè·¯ã«ãããŠãã\(t=0{\mathrm{[s]}}\)ãã§ã¹ã€ãã\(SW\)ãONã«ãããšãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã\(0{\mathrm{[V]}}\)ããåŸã ã«äžæããããçšåºŠæéãçµéãããšãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã黿ºé»å§ã®é»å§\(E{\mathrm{[V]}}\)ãšçãããªããŸãã
ãã®æãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ãå€åããäžå®å€(\(E{\mathrm{[V]}}\))ãšãªã£ãç¶æ ããå®åžžç¶æ ãããå®åžžç¶æ ãã«è³ããŸã§ã®ç¶æ ããéæž¡ç¶æ ãããã®éçšã§èŠãããçŸç¶ããéæž¡çŸè±¡ããšãããŸãã
ãŸãããã®ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ãåŒã§è¡šããšæ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
v_{C}(t)=E\left(1-e^{-\frac{1}{CR}t}\right)\tag{1}
\end{eqnarray}
ãªãã(1)åŒã®å°åºã«ã€ããŠã¯ã以äžã®èšäºã§èª¬æããŠããŸããå°åºæ¹æ³ã«ã€ããŠç¥ãããæ¹ã¯ä»¥äžã®èšäºãåèã«ããŠãã ããã
-
ãRCçŽååè·¯ã®åŸ®åæ¹çšåŒããéæž¡çŸè±¡ãã®è§£ãæ¹ïŒ
ç¶ããèŠã
(1)åŒãããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ããæå®æ°\({\tau}(=CR)\)ããšãªã£ãæã次åŒãšãªããŸãã
\begin{eqnarray}
v_{C}({\tau})&=&E\left(1-e^{-\frac{1}{CR}ÃCR}\right)\\
&=&E\left(1-e^{-1}\right)\\
&=&E\left(1-\frac{1}{e}\right)\tag{2}
\end{eqnarray}
ããã§ã(2)åŒã«åºãŠãã\(e\)ã¯èªç¶å®æ°\(\log_{e}\)ã®åºã§ããããã€ãã¢æ°ãšåŒã°ãããã®ã§ãããã€ãã¢æ°\(e\)ã®å€ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
e=2.71828{\;}18284{\;}59045{\;}23536{\;}{\cdots}\tag{3}
\end{eqnarray}
ãã®ãã€ãã¢æ°\(e\)ã(2)åŒã«ä»£å ¥ãããšã次åŒãšãªããŸãã
\begin{eqnarray}
v_{C}({\tau})&=&E\left(1-\frac{1}{e}\right)\\
&{\approx}&E\left(1-\frac{1}{2.71828{\;}{\cdots}}\right)\\
&{\approx}&E\left(1-0.368\right)\\
&{\approx}&0.632E\tag{4}
\end{eqnarray}
ã€ãŸããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ããæå®æ°\({\tau}(=CR)\)ããšãªã£ãæã黿ºé»å§ã®é»å§\(E\)ã®\(63.2{\%}\)ãšãªããŸãã
èšãæãããšãå®åžžç¶æ ã«ãããé»å§å€(黿ºé»å§ã®é»å§\(E\))ã®\(63.2{\%}\)ã«éãããŸã§ã®æéãæå®æ°\({\tau}\)ãšããããšã«ãªããŸãã
ãŸãã(4)åŒãããæå®æ°\({\tau}(=CR)\)ãã®å€§ããã«ãã£ãŠä»¥äžã®ããšãåãããŸãã
- ãæå®æ°\({\tau}=CR\)ãã倧ããæ
- ãæå®æ°\({\tau}=CR\)ããå°ããæ
ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã\(0.632E\)ã«ãªãã®ã«æéãããããã€ãŸããéæž¡çŸè±¡ãé·ãç¶ãã
ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ãæ©ã\(0.632E\)ã«ãªããã€ãŸããéæž¡çŸè±¡ãæ©ãçµãã(æ©ãå®åžžç¶æ ãšãªã)ã
è£è¶³
- æå®æ°ã¯è±èªã§ã¯ãTime ConstantããšæžããŸãã
- æå®æ°ã¯äžè¬çã«ã¯ãããŠãããããšèªã¿ãŸããããããJISã§ã¯æå®æ°ã®æ¥æ¬èªã®èªã¿æ¹ã¯ããšãããããããã§ãããšå®ããããŠãŸãããŸãããTime Constantãã®éŠèš³èªãšããŠã¯ããšããŠãããããªã®ã§ããšããŠãããããšèªã人ãããŸãã
RCåè·¯ã®æå®æ°ã®æ±ãæ¹
RCåè·¯ã®æå®æ°\({\tau}\)ãã\({\tau}=CR\)ããšãªãã®ã¯ãªãã§ããããïŒ
ããã§ã¯ãã®çç±ã説æããŸãã
å ã«çµè«ããèšããšã»ã»ã»
ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã®ã\(t=0\)ãã«ãããæ¥ç·ãšå®åžžç¶æ ã«ãããé»å§å€(黿ºé»å§ã®é»å§\(E\))ã®äº€ããæéããæå®æ°\({\tau}=CR\)ããšãªãã®ã§ãã
ã§ã¯å®éã«å°åºããŠã¿ãŸãããã
ç¹°ãè¿ãã«ãªããŸãããäžå³ã®RCåè·¯ã«ãããŠãã\(t=0{\mathrm{[s]}}\)ãã§ã¹ã€ãã\(SW\)ãONã«ãããšãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã\(0{\mathrm{[V]}}\)ããåŸã ã«äžæããããçšåºŠæéãçµéãããšãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã黿ºé»å§ã®é»å§\(E{\mathrm{[V]}}\)ãšçãããªããŸãã
(1)åŒã\(t\)ã§åŸ®åããŠãã\(t=0\)ããä»£å ¥ãããšãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã®ã\(t=0\)ãã«ãããæ¥ç·ã®åŸããæ±ããããšãã§ããŸãã
(1)åŒã\(t\)ã§åŸ®åãããšæ¬¡åŒãšãªããŸãã
\begin{eqnarray}
\frac{dv_{C}(t)}{dt}&=&\frac{1}{dt}\left[E\left(1-e^{-\frac{1}{CR}t}\right)\right]\\
&=&\frac{1}{dt}\left(E-Ee^{-\frac{1}{CR}t}\right)\\
&=&E\frac{1}{dt}(1)-E\frac{1}{dt}\left(e^{-\frac{1}{CR}t}\right)\\
&=&Et-E\left(-\frac{1}{CR}\right)e^{-\frac{1}{CR}t}\\
&=&Et+\frac{E}{CR}e^{-\frac{1}{CR}t}\tag{5}
\end{eqnarray}
(5)åŒã«ã\(t=0\)ããä»£å ¥ãããšã次åŒãšãªããŸãã
\begin{eqnarray}
\frac{dv_{C}(0)}{dt}&=&EÃ0+\frac{E}{CR}e^{-\frac{1}{CR}Ã0}\\
&=&0+\frac{E}{CR}e^{0}\\
&=&\frac{E}{CR}Ã1\\
&=&\frac{E}{CR}\tag{6}
\end{eqnarray}
ã€ãŸããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã®ã\(t=0\)ãã«ãããæ¥ç·ã®åŸãã¯ã\(\displaystyle\frac{E}{CR}\)ããšãªããŸãã
ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã®ã\(t=0\)ãã«ãããæ¥ç·ã¯ã\((0,0)\)ããéãã®ã§ã次åŒãšãªããŸãã
\begin{eqnarray}
V=\frac{E}{CR}t\tag{7}
\end{eqnarray}
(7)åŒã®ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã®ã\(t=0\)ãã«ãããæ¥ç·ãšå®åžžç¶æ ã«ãããé»å§å€(黿ºé»å§ã®é»å§\(E\))ã亀ããæéãæ±ããŸãã
(7)åŒã®\(V\)ã«\(E\)ãä»£å ¥ãããšæ¬¡åŒãšãªããŸãã
\begin{eqnarray}
E&=&\frac{E}{CR}t\\
{\Leftrightarrow}t&=&CR\tag{8}
\end{eqnarray}
ãã®æéãæå®æ°ãšãªããããRCåè·¯ã®æå®æ°\({\tau}\)ã¯ã\({\tau}=CR\)ããšãªããŸãã
(8)åŒããåããããã«ãRCåè·¯ã§ã¯ã³ã³ãã³ãµ\(C\)ã®å®¹éãŸãã¯æµæ\(R\)ã®æµæå€ã倧ãããªããšãæå®æ°\({\tau}\)ã倧ãããªãããšãåãããŸã(RCåè·¯ã®æå®æ°\({\tau}\)ã¯ã³ã³ãã³ãµ\(C\)ã®å®¹éãšæµæ\(R\)ã®æµæå€ã«æ¯äŸãããšããããšã§ã)ã
æå®æ°ã®åäœã[s]ã®çç±
æå®æ°\({\tau}\)ã®åäœã\({\mathrm{[s]}}\)ãšãªãã®ã¯ãªãã§ããããïŒ
äŸãã°ãRCåè·¯ã®å Žåãã³ã³ãã³ãµ\(C\)ã®éé»å®¹éã®åäœã¯\({\mathrm{[F]}}\)ãæµæ\(R\)ã®æµæå€ã®åäœã¯\({\mathrm{[Ω]}}\)ãªã®ã«ããªãæå®æ°\({\tau}=CR\)ã®åäœã¯\({\mathrm{[s]}}\)ãšãªãã®ã§ããããïŒ
ããã§ã¯ãã®çç±ã説æããŸãã
ã³ã³ãã³ãµ\(C\)ã®éé»å®¹éã®åäœã𿵿\(R\)ã®æµæå€ã®åäœã«ã€ããŠå¥ã ã«è©³ããèŠãŠãããŸãã
ã³ã³ãã³ãµCã®éé»å®¹éã®åäœã«ã€ããŠ
ã³ã³ãã³ãµ\(C\)ã«èããããé»è·\(q{\mathrm{[C]}}\)ãšã³ã³ãã³ãµã«ãããé»å§\(v{\mathrm{[V]}}\)ãšã³ã³ãã³ãµã®éé»å®¹é\(C{\mathrm{[F]}}\)ã®é¢ä¿ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
q&=&Cv\\
{\Leftrightarrow}C&=&\frac{q}{v}\tag{9}
\end{eqnarray}
ãŸããã³ã³ãã³ãµ\(C\)ã«èããããé»è·\(q{\mathrm{[C]}}\)ãšã³ã³ãã³ãµã«æµãã黿µ\(i{\mathrm{[A]}}\)ã®é¢ä¿ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
i&=&\frac{dq}{dt}\\
{\Leftrightarrow}q&=&{\displaystyle\int}idt\tag{10}
\end{eqnarray}
(10)åŒã(9)åŒã«ä»£å ¥ãããšã次åŒãåŸãããŸãã
\begin{eqnarray}
C&=&\frac{q}{v}\\
&=&\frac{{\displaystyle\int}idt}{v}\tag{11}
\end{eqnarray}
(11)åŒãåäœã§è¡šããšã次åŒãšãªããŸãã
\begin{eqnarray}
{\mathrm{[F]}}&=&\frac{{\mathrm{[A]}}{\mathrm{[s]}}}{{\mathrm{[V]}}}\tag{12}
\end{eqnarray}
æµæRã®æµæå€ã®åäœã«ã€ããŠ
ãªãŒã ã®æ³åãããæµæ\(R\)ã®æµæå€\(R{\mathrm{[Ω]}}\)ãšæµæ\(R\)ã«ãããé»å§\(v{\mathrm{[V]}}\)ãšæµæ\(R\)ã«æµãã黿µ\(i{\mathrm{[A]}}\)ã®é¢ä¿ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
R=\frac{v}{i}\tag{13}
\end{eqnarray}
(13)åŒãåäœã§è¡šããšã次åŒãšãªããŸãã
\begin{eqnarray}
{\mathrm{[Ω]}}=\frac{{\mathrm{[V]}}}{{\mathrm{[A]}}}\tag{14}
\end{eqnarray}
ã€ãŸããæå®æ°\({\tau}=CR\)ãåäœã¯(12)åŒãš(14)åŒãçšãããšæ¬¡åŒãšãªããŸãã
\begin{eqnarray}
æå®æ°{\tau}ã®åäœ&=&{\mathrm{[F]}}Ã{\mathrm{[Ω]}}\\
&=&\frac{{\mathrm{[A]}}{\mathrm{[s]}}}{{\mathrm{[V]}}}Ã\frac{{\mathrm{[V]}}}{{\mathrm{[A]}}}\\
&=&{{\mathrm{[s]}}}\tag{15}
\end{eqnarray}
以äžãããã³ã³ãã³ãµ\(C\)ã®éé»å®¹éã®åäœã𿵿\(R\)ã®æµæå€ã®åäœãåè§£ãããšãæå®æ°\({\tau}\)ã®åäœã\({\mathrm{[s]}}\)ã«ãªãããšãåãããŸãã
RCåè·¯ã®æå®æ°ã2åã3åã»ã»ã»ãšããæã®å€
ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ããæå®æ°\({\tau}(=CR)\)ããšãªã£ãæã黿ºé»å§ã®é»å§\(E\)ã®\(63.2{\%}\)ã«ãªããŸãã
ã§ã¯ãæé\(t\)ãæå®æ°\({\tau}\)ã2åã®æã3åã®æã¯ã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯ã©ããããã«ãªãã®ã§ããããã
æå®æ°Ïã1åã®æ
æå®æ°\({\tau}\)ã1åã®æ(ã€ãŸããã\(t={\tau}ïŒCR\)ãã®æ)ãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯ä»¥äžã®å€ãšãªããŸãã
\begin{eqnarray}
v_{C}({\tau})&=&E\left(1-e^{-\frac{1}{CR}ÃCR}\right)\\
&=&E\left(1-e^{-1}\right)\\
&=&E\left(1-\frac{1}{e}\right)\\
&{\approx}&E\left(1-\frac{1}{2.71828{\;}{\cdots}}\right)\\
&{\approx}&0.632E\tag{16}
\end{eqnarray}
ã€ãŸããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ãæå®æ°\({\tau}\)ã®1åã®æã黿ºé»å§ã®é»å§\(E\)ã®\(63.2{\%}\)ãšãªããŸãã
æå®æ°Ïã2åã®æ
æå®æ°\({\tau}\)ã2åã®æ(ã€ãŸããã\(t={\tau}ïŒ2CR\)ãã®æ)ãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯ä»¥äžã®å€ãšãªããŸãã
\begin{eqnarray}
v_{C}(2{\tau})&=&E\left(1-e^{-\frac{1}{CR}Ã2CR}\right)\\
&=&E\left(1-e^{-2}\right)\\
&=&E\left(1-\frac{1}{e^2}\right)\\
&{\approx}&E\left(1-\frac{1}{2.71828{\;}{\cdots}^2}\right)\\
&{\approx}&0.865E\tag{17}
\end{eqnarray}
ã€ãŸããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ãæå®æ°\({\tau}\)ã®2åã®æã黿ºé»å§ã®é»å§\(E\)ã®\(86.5{\%}\)ãšãªããŸãã
æå®æ°Ïã3åã®æ
æå®æ°\({\tau}\)ã3åã®æ(ã€ãŸããã\(t={\tau}ïŒ3CR\)ãã®æ)ãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯ä»¥äžã®å€ãšãªããŸãã
\begin{eqnarray}
v_{C}(3{\tau})&=&E\left(1-e^{-\frac{1}{CR}Ã3CR}\right)\\
&=&E\left(1-e^{-3}\right)\\
&=&E\left(1-\frac{1}{e^3}\right)\\
&{\approx}&E\left(1-\frac{1}{2.71828{\;}{\cdots}^3}\right)\\
&{\approx}&0.950E\tag{18}
\end{eqnarray}
ã€ãŸããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ãæå®æ°\({\tau}\)ã®3åã®æã黿ºé»å§ã®é»å§\(E\)ã®\(95.0{\%}\)ãšãªããŸãã
æå®æ°Ïã4åã®æ
æå®æ°\({\tau}\)ã4åã®æ(ã€ãŸããã\(t={\tau}ïŒ4CR\)ãã®æ)ãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯ä»¥äžã®å€ãšãªããŸãã
\begin{eqnarray}
v_{C}(4{\tau})&=&E\left(1-e^{-\frac{1}{CR}Ã4CR}\right)\\
&=&E\left(1-e^{-4}\right)\\
&=&E\left(1-\frac{1}{e^4}\right)\\
&{\approx}&E\left(1-\frac{1}{2.71828{\;}{\cdots}^4}\right)\\
&{\approx}&0.982E\tag{19}
\end{eqnarray}
ã€ãŸããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ãæå®æ°\({\tau}\)ã®4åã®æã黿ºé»å§ã®é»å§\(E\)ã®\(98.2{\%}\)ãšãªããŸãã
æé\(t\)ãæå®æ°\({\tau}\)ã®4åãšãªããšãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯å®åžžç¶æ ã«ãããé»å§å€(黿ºé»å§ã®é»å§\(E\))ã®çŽ\(98.2{\%}\)ãšãªãã®ã§ãã»ãŒå®åžžç¶æ ãšãããŸãã
æå®æ°Ïã5åã®æ
æå®æ°\({\tau}\)ã5åã®æ(ã€ãŸããã\(t={\tau}ïŒ5CR\)ãã®æ)ãã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯ä»¥äžã®å€ãšãªããŸãã
\begin{eqnarray}
v_{C}(5{\tau})&=&E\left(1-e^{-\frac{1}{CR}Ã5CR}\right)\\
&=&E\left(1-e^{-5}\right)\\
&=&E\left(1-\frac{1}{e^5}\right)\\
&{\approx}&E\left(1-\frac{1}{2.71828{\;}{\cdots}^5}\right)\\
&{\approx}&0.993E\tag{20}
\end{eqnarray}
ã€ãŸããã³ã³ãã³ãµ\(C\)ã®é»å§\(v_{C}(t)\)ã¯æé\(t\)ãæå®æ°\({\tau}\)ã®5åã®æã黿ºé»å§ã®é»å§\(E\)ã®\(99.3{\%}\)ãšãªããŸãã
ãŸãšã
ãã®èšäºã§ã¯RCåè·¯ã®æå®æ°ã«ã€ããŠã以äžã®å 容ã説æããŸããã
åœèšäºã®ãŸãšã
- RCåè·¯ã®æå®æ°ã®ãã€ã³ã
- RCåè·¯ã®æå®æ°ã®æ±ãæ¹
- æå®æ°ã®åäœã[s]ã®çç±
- RCåè·¯ã®æå®æ°Ïã2åã3åã»ã»ã»ãšããæã®å€
ãèªã¿é ãããããšãããããŸããã
åœãµã€ãã§ã¯é»æ°ã«é¢ããæ§ã
ãªæ
å ±ãèšèŒããŠããŸããåœãµã€ãã®å
šèšäºäžèЧã«ã¯ä»¥äžã®ãã¿ã³ããç§»åããããšãã§ããŸãã