ãã®èšäºã§ã¯ããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ãã«ã€ããŠ
- ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ãšã¯
- ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãäŒé颿°ã,ãã²ã€ã³ã,ãã«ãããªãåšæ³¢æ°ã,ãäœçžã
- ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãåšæ³¢æ°ç¹æ§ã
ãªã©ãå³ãçšããŠåããããã説æããããã«å¿æããŠããŸãããåèã«ãªãã°å¹žãã§ãã
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿
äžå³ã«ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã瀺ããŠããŸãã
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã¯ããªãã¢ã³ããšæµæ\(R_1,R_2\)ãšã³ã³ãã³ãµ\(C\)ã§æ§æãããŠããããŒãã¹ãã£ã«ã¿ã§ããå ¥åé»å§\(V_{IN}\)ã®äœåšæ³¢æåãééãããé«åšæ³¢æåã鮿ããŸãã
ã³ã³ãã³ãµ\(C\)ãç¡ããã°ãåè·¯æ§æã¯å転å¢å¹ åè·¯ãšåãã«ãªããŸãããã®ãããã³ã³ãã³ãµ\(C\)ã®ã€ã³ããŒãã³ã¹\({\dot{Z}_C}\left(=\displaystyle\frac{1}{j2{\pi}fC}\right)\)ãéåžžã«å€§ãããªãé å(åšæ³¢æ°\(f\)ãäœãé å)ã§ã¯ãã³ã³ãã³ãµ\(C\)ããªãŒãã³(éæŸç¶æ )ã«èŠãªãããšãã§ããã®ã§ãå転å¢å¹ åè·¯ãšããŠåäœãããŸãã
ããããŠèªã¿ãã
ãã®èšäºã§èª¬æããŠããããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ãã®ããã«ããªãã¢ã³ããªã©ã®èœåçŽ åã«æµæãã³ã³ãã³ãµãçµã¿åãããŠæ§æããããã£ã«ã¿ã®ããšããã¢ã¯ãã£ããã£ã«ã¿ããšãããŸãã
äžæ¹ãæµæã»ã³ã€ã«ã»ã³ã³ãã³ãµãªã©ã®ååçŽ åã®ã¿ã§æ§æããããã£ã«ã¿ã®ããšããããã·ããã£ã«ã¿ããšãããŸãã
ãã¢ã¯ãã£ããã£ã«ã¿ããšãããã·ããã£ã«ã¿ãã®ç¹åŸŽã«ã€ããŠã¯äžèšã®èšäºã§ãŸãšããŠããŸãã®ã§ããåèã«ãªããšå¹žãã§ãã
-
ãããã·ããã£ã«ã¿ããšãã¢ã¯ãã£ããã£ã«ã¿ãã®éãã«ã€ããŠïŒ
ç¶ããèŠã
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãäŒé颿°ããšãã²ã€ã³ã
ãäŒé颿°ããšãã²ã€ã³ãã®å°åºæ¹æ³ã«ã€ããŠèª¬æããŸãã
äžå³ã«ç€ºãããã«ãæµæ\(R_1\)ã®ã€ã³ããŒãã³ã¹ã\({\dot{Z}_1}\)ãæµæ\(R_2\)ãšã³ã³ãã³ãµ\(C\)ã®åæã€ã³ããŒãã³ã¹ã\({\dot{Z}_2}\)ãšãããšãåºåé»å§\(V_{OUT}\)ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
V_{OUT}=-\frac{{\dot{Z}_2}}{{\dot{Z}_1}}V_{IN}\tag{2-1}
\end{eqnarray}
ããããŠèªã¿ãã
(2-1)åŒã®å°åºæ¹æ³ã«ã€ããŠã¯ããå転å¢å¹ åè·¯ã«ãããåºåé»å§\(V_{OUT}\)ã®å°åºæ¹æ³ããšåãèãæ¹ãšãªããŸããå転å¢å¹ åè·¯ã«ã€ããŠã¯äžèšã®èšäºã§èª¬æããŠããŸãã®ã§ããåèã«ãªãã°å¹žãã§ãã
-
ãå転å¢å¹ åè·¯ããåããããã解説ïŒããªãã¢ã³ãã
ç¶ããèŠã
ã€ã³ããŒãã³ã¹\({\dot{Z}_1}\)ãšã€ã³ããŒãã³ã¹\({\dot{Z}_2}\)ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
{\dot{Z}_1}&=&R_1\tag{2-2}\\
\\
{\dot{Z}_2}&=&\frac{1}{\displaystyle\frac{1}{R_2}+\displaystyle\frac{1}{\displaystyle\frac{1}{j{\omega}C}}}=\frac{R_2}{1+j{\omega}CR_2}\tag{2-3}\\
\end{eqnarray}
(2-2)åŒãš(2-3)åŒã(2-1)åŒã«ä»£å ¥ãããšãåºåé»å§\(V_{OUT}\)ã¯æ¬¡åŒãšãªããŸãã
\begin{eqnarray}
V_{OUT}&=&-\frac{{\dot{Z}_2}}{{\dot{Z}_1}}V_{IN}\\
\\
&=&-\frac{\displaystyle\frac{R_2}{1+j{\omega}CR_2}}{R_1}V_{IN}\\
\\
&=&-\frac{R_2}{R_1}{\cdot}\frac{1}{1+j{\omega}CR_2}V_{IN}\tag{2-4}
\end{eqnarray}
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®äŒé颿°\(G(j{\omega})\)ã¯å ¥åé»å§\(V_{IN}\)ãšåºåé»å§\(V_{OUT}\)ã®æ¯ã§ãããã®ããã(2-4)åŒãå€åœ¢ãããšãäŒé颿°\(G(j{\omega})\)ã¯æ¬¡åŒã§è¡šãããšãã§ããŸãã
\begin{eqnarray}
G(j{\omega})=\frac{V_{OUT}}{V_{IN}}=-\frac{R_2}{R_1}{\cdot}\frac{1}{1+j{\omega}CR_2}\tag{2-5}
\end{eqnarray}
(2-5)åŒã®åæ¯ã«ã¯èæ°åäœ\(j\)ããããŸããããã§ååã®ã¿ã«èæ°åäœ\(j\)ãããããã«ããããã«ã忝ãšååã«ã\(1-j{\omega}CR_2\)ããæããŸãããããšã(2-5)åŒã¯æ¬¡åŒã«å€åœ¢ããããšãã§ããŸãã
\begin{eqnarray}
G(j{\omega})&=&-\frac{R_2}{R_1}{\cdot}\frac{1}{1+j{\omega}CR_2}{\cdot}\frac{1-j{\omega}CR_2}{1-j{\omega}CR_2}\\
\\
&=&-\frac{R_2}{R_1}{\cdot}\frac{1-j{\omega}CR_2}{1+({\omega}CR_2)^2}\\
\\
&=&-\frac{R_2}{R_1}{\cdot}\frac{1}{1+({\omega}CR_2)^2}+j\frac{R_2}{R_1}{\cdot}\frac{{\omega}CR_2}{1+({\omega}CR_2)^2}\tag{2-6}
\end{eqnarray}
äŒé颿°\(G(j{\omega})\)ã®çµ¶å¯Ÿå€ããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ã²ã€ã³\(|G(j{\omega})|\)ãšãªããŸããããå°ã詳ãã説æãããšããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ã²ã€ã³\(|G(j{\omega})|\)ã¯(2-6)åŒã«ãããŠããå®éš\(\left\{-\displaystyle\frac{R_2}{R_1}{\cdot}\frac{1}{1+({\omega}CR_2)^2}\right\}\)ã®2ä¹ããšãèéš\(\left\{\displaystyle\frac{R_2}{R_1}{\cdot}\frac{{\omega}CR_2}{1+({\omega}CR_2)^2}\right\}\)ã®2ä¹ããè¶³ããŠãå¹³æ¹æ ¹ãåãããšã§æ±ããããšãã§ããŸãããã®ãããã²ã€ã³\(|G(j{\omega})|\)ã¯æ¬¡åŒãšãªããŸãã
\begin{eqnarray}
|G(j{\omega})|&=&\sqrt{\left\{-\frac{R_2}{R_1}{\cdot}\frac{1}{1+({\omega}CR_2)^2}\right\}^2+\left\{\frac{R_2}{R_1}{\cdot}\frac{{\omega}CR_2}{1+({\omega}CR_2)^2}\right\}^2}\\
\\
&=&\frac{R_2}{R_1}\sqrt{\frac{1+({\omega}CR_2)^2}{\left\{1+({\omega}CR_2)^2\right\}^2}}\\
\\
&=&\frac{R_2}{R_1}\sqrt{\frac{1}{1+({\omega}CR_2)^2}}\\
\\
&=&\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{1+({\omega}CR_2)^2}}\tag{2-7}
\end{eqnarray}
ããã§ãè§åšæ³¢æ°\({\omega}\)ã¯\({\omega}=2{\pi}f\)ã®é¢ä¿ãããã®ã§ã(2-7)åŒã®\({\omega}\)ã\(2{\pi}f\)ã«æžãæãããšã次åŒãšãªããŸãã
\begin{eqnarray}
|G(j{\omega})|=\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{1+(2{\pi}fCR_2)^2}}\tag{2-8}
\end{eqnarray}
ãªãããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ã²ã€ã³\(|G(j{\omega})|\)ããã·ãã«è¡šç€ºã«ãããã®ã\(G_{dB}(j{\omega})\)ãšãããšã\(G_{dB}(j{\omega})\)ã¯æ¬¡åŒãšãªããŸãã
\begin{eqnarray}
G_{dB}(j{\omega})&=&20{\log}_{10}|G(j{\omega})|\\
\\
&=&20{\log}_{10}\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{1+({\omega}CR_2)^2}}{\mathrm{[dB]}}\\
\\
&=&20{\log}_{10}\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{1+(2{\pi}fCR_2)^2}}{\mathrm{[dB]}}\tag{2-9}
\end{eqnarray}
ããã§ããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãäŒé颿°ããšãã²ã€ã³ãã®å°åºã¯çµããã§ãã
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãã«ãããªãåšæ³¢æ°ã
ã«ãããªãåšæ³¢æ°\(f_C\)ã¯ããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ã²ã€ã³\(|G(j{\omega})|\)ã3dBäžãã(\(\displaystyle\frac{R_2}{R_1}{\cdot}\displaystyle\frac{1}{\sqrt{2}}\left({\;}{\approx}{\;}\displaystyle\frac{R_2}{R_1}{\cdot}0.707\right)\)ã«ãªã)åšæ³¢æ°ã§ãããæ¬¡åŒãšãªããŸãã
\begin{eqnarray}
\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{2}}&=&|G(j{\omega})|\\
\\
&=&\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{1+(2{\pi}fC_CR_2)^2}}\\
\\
{\Leftrightarrow}\sqrt{1+(2{\pi}f_CCR_2)^2}&=&\sqrt{2}\\
\\
1+(2{\pi}f_CCR_2)^2&=&2\\
\\
(2{\pi}f_CCR_2)^2&=&1\\
\\
2{\pi}f_CCR_2&=&1\\
\\
f_C&=&\frac{1}{2{\pi}CR_2}\tag{3-1}
\end{eqnarray}
å ¥åé»å§\(V_{IN}\)ã¯ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã«ãã£ãŠãã«ãããªãåšæ³¢æ°\(f_C\)ããäœãæåã®åšæ³¢æ°ã¯ã»ãšãã©ééããã«ãããªãåšæ³¢æ°\(f_C\)ããé«ãæåã®åšæ³¢æ°ã¯æžè¡°ããŸãã
ããããŠèªã¿ãã
ãã«ãããªãåšæ³¢æ°ã£ãŠäœïŒããšããæ¹ã¯äžèšã®èšäºã圹ã«ç«ã€ãšæããŸãã®ã§ããåèã«ããŠãã ããã
-
ãã«ãããªãåšæ³¢æ°(é®æåšæ³¢æ°)ããšã¯ïŒããã£ã«ã¿åè·¯ã
ç¶ããèŠã
è£è¶³
- ã«ãããªãåšæ³¢æ°ã¯ãé®æåšæ³¢æ°ããšãåŒã°ããŠããŸãã
ãã«ãããªãè§åšæ³¢æ°ãã«ã€ããŠ
ã«ãããªãè§åšæ³¢æ°\({\omega}_C\)ã¯æ¬¡åŒãšãªããŸãã
\begin{eqnarray}
{\omega}_C=\frac{1}{CR_2}
\end{eqnarray}
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãäœçžã
ç¹°ãè¿ãã«ãªããŸããããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®äŒé颿°\(G(j{\omega})\)ã¯æ¬¡åŒã§è¡šãããŸãã
\begin{eqnarray}
G(j{\omega})=-\frac{R_2}{R_1}{\cdot}\frac{1}{1+({\omega}CR_2)^2}+j\frac{R_2}{R_1}{\cdot}\frac{{\omega}CR_2}{1+({\omega}CR_2)^2}\tag{4-1}
\end{eqnarray}
è€çŽ å¹³é¢(暪軞ã¯å®æ°ã®ç®çã瞊軞ã¯èæ°ã®ç®çã§ãããã¬ãŠã¹å¹³é¢ãšãåŒã°ããŠãã)äžã«(4-1)åŒã®ãã¯ãã«ãæããšäžå³ã®ããã«ãªããŸãããã®ãã¯ãã«å³ãããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®äœçž\({\theta}\)ãæ±ºãŸããŸãã
åšæ³¢æ°\(f\)ãéåžžã«äœãããèéš\(\left\{\displaystyle\frac{R_2}{R_1}{\cdot}\frac{{\omega}CR_2}{1+({\omega}CR_2)^2}\right\}\)ãããå®éš\(\left\{-\displaystyle\frac{R_2}{R_1}{\cdot}\frac{1}{1+({\omega}CR_2)^2}\right\}\)ããããéåžžã«å°ãããªãæãäœçž\({\theta}\)ã¯çŽ\({\pi}{\mathrm{[rad]}}(=180{\mathrm{°}})\)ãšãªããŸãã
åšæ³¢æ°\(f\)ãéåžžã«é«ãããèéš\(\left\{\displaystyle\frac{R_2}{R_1}{\cdot}\frac{{\omega}CR_2}{1+({\omega}CR_2)^2}\right\}\)ãããå®éš\(\left\{-\displaystyle\frac{R_2}{R_1}{\cdot}\frac{1}{1+({\omega}CR_2)^2}\right\}\)ããããéåžžã«å€§ãããªãæãäœçž\({\theta}\)ã¯çŽ\(\displaystyle\frac{{\pi}}{2}{\mathrm{[rad]}}(=90{\mathrm{°}})\)ãšãªããŸãã
[rad]ã[°(床)]ã«å€æããããã«ã¯ã\(\displaystyle\frac{180}{{\pi}}\)ãæããŸãã
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãåšæ³¢æ°ç¹æ§ã
äžäŸãšããŠãæµæ\(R_1=1{\mathrm{[kΩ]}},R_2=10{\mathrm{[kΩ]}}\)ãã³ã³ãã³ãµ\(C=0.1{\mathrm{[ÎŒF]}}\)ã®ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã«ãããŠãã²ã€ã³\(|G(j{\omega})|\)ãšäœçž\({\theta}\)ã®åšæ³¢æ°ç¹æ§ãäžå³ã«ç€ºããŠããŸãã
ã³ã³ãã³ãµ\(C\)ã®ã€ã³ããŒãã³ã¹\({\dot{Z}_C}\left(=\displaystyle\frac{1}{j2{\pi}fC}\right)\)ãéåžžã«å€§ãããªãé å(åšæ³¢æ°\(f\)ãäœãé å)ã§ã¯ãã³ã³ãã³ãµ\(C\)ããªãŒãã³(éæŸç¶æ )ã«èŠãªãããšãã§ããã®ã§ãå転å¢å¹ åè·¯ãšããŠåäœãããŸãããã®ãããåšæ³¢æ°\(f\)ãäœãé åã§ã¯ãã²ã€ã³\(|G(j{\omega})|\)ã¯ä»¥äžã®å€ãšãªããŸãã
\begin{eqnarray}
G_{dB}(j{\omega})&=&20{\log}_{10}\displaystyle\frac{R_2}{R_1}\\
\\
&=&20{\log}_{10}\displaystyle\frac{10Ã10^3}{1Ã10^3}\\
\\
&=&20{\mathrm{[dB]}}\tag{5-1}
\end{eqnarray}
ãŸãããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ã«ãããªãåšæ³¢æ°\(f_C\)ã¯ä»¥äžã®å€ãšãªããŸãã
\begin{eqnarray}
f_C&=&\frac{1}{2{\pi}CR_2}\\
\\
&=&\frac{1}{2{\pi}Ã0.1Ã10^{-6}Ã10Ã10^{3}}\\
\\
&=&159.154{\cdots}\\
\\
&{\approx}&159{\mathrm{[Hz]}}\tag{5-2}
\end{eqnarray}
äžå³ãèŠããšãã«ãããªãåšæ³¢æ°\(f_C{\;}{\approx}{\;}159{\mathrm{[Hz]}}\)ã§ã²ã€ã³\(|G(j{\omega})|\)ãçŽïŒ3dBäžãã£ãŠããããšã確èªã§ããŸã(20dBïŒ3dB=17dBã«ãªã£ãŠãã)ããããŠããã®æã®äœçž\({\theta}\)ã135°ã«ãªã£ãŠããããšã確èªã§ããŸãã
ãŸããåšæ³¢æ°\(f\)ãé«ããŠã\(1{\;}{\ll}{\;}(2{\pi}fCR_2)^2\)ããšã¿ãªããå Žåãã1ããç¡èŠãããšãã²ã€ã³\(|G(j{\omega})|\)ã¯æ¬¡åŒã§è¡šãããšãã§ããŸãã
\begin{eqnarray}
|G(j{\omega})|&=&\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{1+(2{\pi}fCR_2)^2}}\\
\\
&{\approx}&\frac{R_2}{R_1}{\cdot}\frac{1}{\sqrt{(2{\pi}fCR_2)^2}}\\
\\
&{\approx}&\frac{R_2}{R_1}{\cdot}\frac{1}{2{\pi}fCR_2}\tag{5-3}
\end{eqnarray}
äžåŒãããåšæ³¢æ°\(f\)ã10åã«ãªããšãã²ã€ã³\(|G(j{\omega})|\)ã1/10ã«ãªããŸã(ãã·ãã«è¡šèšã§ã¯ãã\(G_{dB}(j{\omega})=20{\log}_{10}\displaystyle\frac{1}{10}=-20{\mathrm{[dB]}}\)ããšãªããŸã)ãã€ãŸããåšæ³¢æ°ãé«ãé åã§ã¯ãïŒ20[dB/dec]ã®åŸãã§ã²ã€ã³\(|G(j{\omega})|\)ãæžå°ããŠããŸãã
åæ§ã«ãåšæ³¢æ°fã2åã«ãªããšãã²ã€ã³\(|G(j{\omega})|\)ã1/2ã«ãªããŸã(ãã·ãã«è¡šèšã§ã¯ãã\(G_{dB}(j{\omega})=20{\log}_{10}\displaystyle\frac{1}{2}=-6{\mathrm{[dB]}}\)ããšãªããŸã)ãã€ãŸããåšæ³¢æ°ãé«ãé åã§ã¯ãïŒ6[dB/oct]ã®åŸãã§ã²ã€ã³\(|G(j{\omega})|\)ãæžå°ããŠãããšãèšããŸãã
åšæ³¢æ°fã2åã«ãªãããšãoct(ãªã¯ã¿ãŒã)ã10åã«ãªãããšãdec(ãã£ã±ãŒã)ãšãããŸãã
ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãåšæ³¢æ°ç¹æ§ããLTspiceã§æãæ¹æ³
ãåšæ³¢æ°ç¹æ§ããLTspiceã§æãããã«ã¯ã.acè§£æããçšããŸãã
äžå³ã«LTspiceã§æãããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã瀺ããŠããŸã(\(R_1=1{\mathrm{[kΩ]}},R_2=10{\mathrm{[kΩ]}}\)ã\(C=0.1{\mathrm{[ÎŒF]}}\))ã
VOUT端åã®é»å§ãããããããããšã§ãåšæ³¢æ°ç¹æ§ãåºåããããšãã§ããããã«ãªããŸãã
ã.ac dec 100 1 10kãã¯ãä¿¡å·æº(ããã§ã¯å ¥åé»å§\(V_{IN}\))ã®åšæ³¢æ°ã1Hzïœ10kHzã«å€åãããããã®æã1ãã£ã±ãŒã(10å)åœããã®ã¹ãããæ°ã100ãšãããããšããæå³ã§ãã
LTspiceã§ã®ACè§£æã®æ¹æ³ã¯äžèšã®èšäºã§èª¬æããŠããŸãã®ã§ããåèã«ããŠãã ããã
-
ãLTspiceãåšæ³¢æ°ç¹æ§ã芳枬ããã.acè§£æãã®äœ¿ãæ¹ãšå¿çš
ç¶ããèŠã
ãŸãšã
ãã®èšäºã§ã¯ããªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ãã«ã€ããŠã以äžã®å 容ã説æããŸããã
- ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ãšã¯
- ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãäŒé颿°ã,ãã²ã€ã³ã,ãã«ãããªãåšæ³¢æ°ã,ãäœçžã
- ãªãã¢ã³ããçšããããŒãã¹ãã£ã«ã¿ã®ãåšæ³¢æ°ç¹æ§ã
ãèªã¿é ãããããšãããããŸããã
åœãµã€ãã§ã¯é»æ°ã«é¢ããæ§ã
ãªæ
å ±ãèšèŒããŠããŸããåœãµã€ãã®å
šèšäºäžèЧã¯ä»¥äžã®ãã¿ã³ããç§»åããããšãã§ããŸãã
ãŸããäžèšã«åœãµã€ãã®äººæ°èšäºãèšèŒããŠããŸãããåèã«ãªãã°å¹žãã§ãã