ãåºæ¬äºé ïŒãç©äœãç䟡åè·¯ã«å€æãã
ç©äœã®è¡šé¢é»äœãèšç®ããããã§ãå°äœãšçµ¶çžäœãç䟡åè·¯ã«çŽãå¿
èŠããããŸãããããéåžžã«éèŠã§ããå°äœã¯å
éšã§é»äœå·®ãçããªãããããã ã®ç·ã«ãªããŸãããçµ¶çžäœã¯é»å Žãå
éšã«å
¥ã蟌ãããšãå¯èœãªãããé»äœå·®ãçããŸãããã®çµæãçµ¶çžäœã¯ç䟡åè·¯ãã³ã³ãã³ãµãšãªããŸãã
ãŸããç©äœ(å°äœãçµ¶çžäœ)ã¯å°é¢(GND)ãšå¯Ÿå°éé»å®¹éãšããã³ã³ãã³ãµãæ§æããŠããŸããå°é¢ã«å¯Ÿããã³ã³ãã³ãµãšããã€ã¡ãŒãžã§ããã§ããã
ãããã®çµã¿åããã§ç䟡åè·¯ãæ±ºãŸããŸãããã®ããã«ç䟡åè·¯ã«çŽãããšã§çè§£ãã«ãã衚é¢é»äœãäžåŠã髿 ¡ã§ç¿ãã³ã³ãã³ãµã®åè·¯ã«å€æã§ããŸãã
ãåºæ¬äºé ïŒãå°äœãšçµ¶çžäœã®é»è·ç¶æ ã«ã€ããŠ
â å°äœã®å Žå
å°äœã¯å
éšã§é»åãèªç±ã«åãããšãå¯èœã§ãããã®ããããã©ã¹ã«åž¯é»ããç©äœããã€ãã¹ã«åž¯é»ããç©äœãå°äœã«è¿ã¥ãããšããå°äœå
éšã®é»è·ã®ç¶æ
ã¯ãã®ããã«ãªããŸã(éé»èªå°ãšãããŸã)ã
é»è·ãã©ã®ããã«ååžãããã¯å€éšã®ç¶æ
ã«ãã£ãŠå€åããŸããäŸãã°ããã©ã¹ã«åž¯é»ããŠããå°äœããããå€éšã«äœãç©äœããªãç¶æ
ã§ã¯ããã©ã¹é»è·ã¯åçã«ååžããŸããããã€ãã¹é»è·ãå°äœäžé¢ãªã©ã«ååšãããšããã©ã¹é»è·ã¯ãã€ãã¹é»è·ã«åŒãå¯ããããå°äœäžé¢ã®æ¹ã«éäžããŸãã
â çµ¶çžäœã®å Žå
äžæ¹ãçµ¶çžäœã¯é»åãèªç±ã«åãããšãã§ããŸããããã®ããããã©ã¹ã«åž¯é»ããç©äœããã€ãã¹ã«åž¯é»ããç©äœãè¿ã¥ãããšããé»è·ã®ç¶æ
ã¯ãã®ããã«ãªããŸã(èªé»å極ãšãããŸã)ãçµ¶çžäœã¯å€éšã®é»å Žããã¹ãŠæã¡æ¶ãããšãã§ããŸããããã®ãããçµ¶çžäœå
éšã«ã¯é»å Žããããé»äœå·®ãçããŸãããã®é»äœå·®ãã³ã³ãã³ãµã§è¡šããŸãããªããã³ã³ãã³ãµã§åããåãé»è·ã®æ°ã¯å¿
ãçããã§ããããã¯ä»åŸããªãéèŠãšãªããŸããæ±ºããŠé»äœå·®ãããããé»è·ã®æ°ãå€ããããšããçµ¶çžäœäžé¢ãšäžé¢ã§ååšããé»è·ã®æ°ãå€ããªãããã«ããŠãã ããã
çµ¶çžäœããã©ã¹ããã€ãã¹ã«åž¯é»ããŠãããšãã¯ãã®ããã«ãªããŸããå
šäœãšããŠãã©ã¹ã«åž¯é»ããŠããã°ãåèšã®é»è·ããã©ã¹ããã€ãã¹ã«åž¯é»ããŠããã°é»è·ã®åèšããã€ãã¹ã«ãªã£ãŠããŸãããªããçµ¶çžäœã®äžé¢ãšäžé¢ã§é»äœå·®ããããããé»äœå·®ã衚ãã³ã³ãã³ãµã¯ãã¡ãããããŸãã
ããã§åž¯é»ããŠããªãæ¹ãé€é»ããŸã(ã€ãªãã€ã¶ã䜿çšãã³ã³ãã³ãµã§ãããšæ¥å°ã¿ãããªæã)ãäŸãã°ãçµ¶çžäœã®äžé¢ã垯é»ããŠãããšãã忥µã«ãã£ãŠäžé¢ã«ã¯ãã©ã¹ãèŠããŸãããã®ãã©ã¹ãé€é»ãããããäžé¢ã¯ãã€ãã¹é»è·ãä»çããŸãããã®çµæãçµ¶çžäœã¯ã³ã³ãã³ãµãæ§æããŠããŸããŸããããã¯çµ¶çžäœå
éšã®é»åãç§»åã§ããªãããšã«ãã£ãŠçããçŸè±¡ã§ããã€ãŸããçµ¶çžäœã®ããéšåã¯ãã©ã¹ã«åž¯é»ããããéšåã¯ãã€ãã¹ã«åž¯é»ããŠããŸãããç©äœã®ç·é»è·éããŒããšãªããŸãã(å°éçšèªã§ãããšå極æ§åž¯é»çŸè±¡ãšãããŸã)ã
çµ¶çžäœããã£ã«ã çèããã®ã ãšããã©ã¹ãšãã€ãã¹ãæã¡æ¶ãåã£ãŠããããã«ã¿ãã垯é»ããŠããã«ãé¢ããããèŠããäž0Vã«ãªã£ãŠããŸããŸããããã¯ãã³ã³ãã³ãµã®åŒã®åãtãå°ããããã§ãã
å€ç«ãã垯é»å°äœã®å Žå
ã§ã¯ãããã衚é¢é»äœãã©ã®ããã«æ±ºãŸãã®ããæ§ã
ãªäŸã§è§£èª¬ããŸãããŸãã¯ãè·é¢dé¢ããå Žæã«è¡šé¢ç©ãSãåãtã®å€ç«ããå°äœãããå Žåã§ããå°äœã®åž¯é»é»è·ã¯+Qã§ãããå°äœäžé¢ã®è¡šé¢é»äœãVSãšä»®å®ããŸãããã®æãå°äœãšåããåãGNDã¯å°äœã®ãã©ã¹é»è·ã«åŒãä»ãããããã€ãã¹ã«ãªããå°äœäžé¢ãšGNDã®éã«å¯Ÿå°éé»å®¹éCDãã§ããŸãããªããå°äœå
éšã®é»äœå·®ã¯ãŒããªã®ã§ãå°äœäžé¢ã®é»äœãVSãšãªããŸãã
ãŸããã³ã³ãã³ãµã®åŒ(Q=CV)ããã
$$ V_S= \frac{Q}{C_D}$$
ããã§ã察å°éé»å®¹éCDã¯
$$ C_D = {\varepsilon_0} \frac{S}{d}$$
ããã§ãε 0ã¯ç空ã®èªé»çã§ãã
ãã®ãããå°äœã®è¡šé¢é»äœVSã¯
$$ V_S= \frac{Q}{C_D}= \frac{dQ}{{\varepsilon_0}S}$$
ãšãªããŸãã
å€ç«ãã垯é»å°äœãæã¡äžããå Žå
ã§ã¯ãå€ç«ãã垯é»å°äœãæã¡äžãããã©ã®ããã«ãªãã§ãããããä»åã¯ãè·é¢dé¢ããå Žæã«è¡šé¢ç©ãSã®å€ç«ããå°äœãããç¶æ
(ãã®æã®åž¯é»é»è·ãQã§ãããå°äœäžé¢ã®è¡šé¢é»äœãVSãšãã)ãããè·é¢5dãš5åã®è·é¢ã«æã¡äžããæã«è¡šé¢é»äœVSãã©ããªããèšç®ããŠã¿ãŸãã
垯é»ããŠããå°äœãæã¡äžãããšãã«é»è·QããªãŒã¯ããŠéããªããšä»®å®ãããšã衚é¢é»äœVSãšè·é¢dã¯æ¯äŸããŸãããã®ãããè·é¢ã5åã«ãããšã衚é¢é»äœã¯5åãšãªããŸãã
å€ç«ãã垯é»çµ¶çžäœã®å Žå
ä»åºŠã¯å°äœã§ã¯ãªããçµ¶çžäœã®å ŽåãèããŠããŸããè·é¢dé¢ããå Žæã«è¡šé¢ç©ãSãåããtã®å€ç«ããçµ¶çžäœãããå Žåã§ããçµ¶çžäœäžé¢ã®åž¯é»é»è·ã+Qã§ãããçµ¶çžäœäžé¢ã®è¡šé¢é»äœãVS1ãšä»®å®ããŸãããã®æãçµ¶çžäœãšåããåãGNDã¯ãã€ãã¹ãšãªããçµ¶çžäœäžé¢ãšGNDã®éã«å¯Ÿå°éé»å®¹éCDãã§ããŸãããªããçµ¶çžäœã¯é»äœå·®ãçããŸãããã®ãããçµ¶çžäœäžé¢ã®è¡šé¢é»äœã¯çµ¶çžäœäžé¢ã®è¡šé¢é»äœVS1ãšåãã«ãªããŸãããä»åã¯çµ¶çžäœäžé¢ã®è¡šé¢é»äœãVS2ãšä»®å®ããŸãã
çµ¶çžäœãçµ¶çžæ¿ãæãã å¹³è¡å¹³æ¿ã³ã³ãã³ãµ(容éCI)ãšä»®å®ãããšã
$$ C_I = {\varepsilon_0}{\varepsilon_r} \frac{S}{d}$$
察å°éé»å®¹éCDã¯
$$ C_D = {\varepsilon_0} \frac{S}{d}$$
ããã§ãε 0ã¯ç空ã®èªé»çãε rã¯çµ¶çžäœã®æ¯èªé»çã§ãã
ããã«çµ¶çžäœäžé¢ããèŠã察å°éé»å®¹éCã¯CIãšCDã®çŽåæ¥ç¶ãšãªããã
$$ C_D = \frac{1}{\frac{1}{ C_I }+\frac{1}{ C_D}}$$
ãšãªããããçµ¶çžäœäžé¢ã®è¡šé¢é»äœVS1ã¯
$$ V_{S1} = \frac{Q}{C} = \frac{Q}{C_I}(1+\frac{ C_I }{C_D})$$
ãšãªããŸãã
ã€ãŸããçµ¶çžäœãæã¡äžãããšãCI/ CDãå¢å ããŸããå¢å ã¯æã¡äžããè·é¢dã«æ¯äŸããŸããäŸãã°ãèããã£ã«ã ãå°é¢ã«ãããšãã¯ãCIãéåžžã«å€§ãããããé»äœã¯ã»ãŒãŒãã§ããããã®ãã£ã«ã ãæ°mmã§ãæã¡äžãããšãCDãçŸããæ¥æ¿ã«è¡šé¢é»äœãå¢å ããŸãããŸããè·é¢ã1mmãã2mmã«ãªããšåã§ãããŸãã1mãã2mã§ãåã§ããã€ãŸããé«ãå Žæã«ãããã®ã¯è·é¢ãå€ããŠãå€åçãå°ãããªããŸãã
å€ç«ãã垯é»çµ¶çžäœãæã¡äžããå Žå
ã§ã¯ãå€ç«ãã垯é»çµ¶çžäœãæã¡äžãããã©ã®ããã«ãªãã§ãããããå°äœã®å Žåã¯æ¯äŸããŸããããçµ¶çžäœã®å Žåã¯æ¯äŸããŸããã垯é»ããŠããçµ¶çžäœãæã¡äžãããšãã«é»è·QããªãŒã¯ããŠéããªããšä»®å®ãããšãçµ¶çžäœã®å®¹éCIã¯äžå®ãªã®ã§ã倿°ã¯è·é¢dã®ã¿ã«ãªããŸããåŒãå³ã§è¡šããšç·åœ¢å¢å ãšãªãããšãããããŸãããã®å³ã§åããããšã¯2ã€ãããŸãã
â æåã®è¡šé¢é»äœQ/CIã倧ããå Žåãããªãã¡èªé»çãäœãçµ¶çžäœã䜿çšããå Žåãè·é¢ã«ããå€åçã¯å°ãããªããŸã(äŸïŒ1000Vãã1500Vã®ãããªæã)ã
â¡æåã®è¡šé¢é»äœQ/CIãå°ããå Žåãããªãã¡èªé»çãäœãçµ¶çžäœãèããã£ã«ã çã䜿çšããå Žåãæ°mmã§ãæã¡äžãããšãæ¥æ¿ã«è¡šé¢é»äœãããããŸã(äŸïŒ0Vãã500Vã®ãããªæã)ã
â¢çµ¶çžäœäžé¢ãšçµ¶çžäœäžé¢ã®é»äœå·®(VS1- VS2)ã¯çµ¶çžäœãæã¡äžããŠãå€ãããŸãããããããçµ¶çžäœã®è¡šãšè£ã®é»äœå·®ããªãããããšãã¯èªé»çã®é«ããã®ã䜿çšããã°ããããšãããããŸãã
çµ¶çžäœã®åããç°ãªãå Žå
çµ¶çžäœãåãå Žåã¯å°é¢ã«ãããŠã衚é¢é»äœãçŸããŸãããçµ¶çžäœãèããã£ã«ã çã¯å°é¢ã«çœ®ããšè¡šé¢é»äœVSãèŠããªããªããŸãããã®çç±ã解説ããŸãã
çµ¶çžäœãçµ¶çžæ¿ãæãã å¹³è¡å¹³æ¿ã³ã³ãã³ãµ(容éCI)ãšä»®å®ãããšã
$$ C_I = {\varepsilon_0}{\varepsilon_r} \frac{S}{d}$$
ã³ã³ãã³ãµã®åŒ(Q=CV)ãããçµ¶çžäœã®è¡šé¢é»äœVSã¯
$$ V_S= \frac{Q}{C_I}= \frac{dQ}{{\varepsilon_0}{\varepsilon_r}S}$$
ãšãªããŸããããããåãçµ¶çžäœã®æ¹ã衚é¢é»äœã¯å€§ãããªãããšãããããŸãã
äŸãã°ããã£ã«ã çã¯ãšãŠãèãããã容éCIã倧ãããªããŸããããªãã¡ã衚é¢é»äœVSã¯0Vã«è¿ãå€ãšãªããŸãã
äœè«ã§ãããããã¯å
ã»ã©èª¬æãã忥µæ§åž¯é»çŸè±¡ã«ãšã£ãŠã¯ãšãŠãéèŠãªçŸè±¡ã§ãããã£ã«ã ãªã©èãç©äœã¯åž¯é»ããŠããªãæ¹ãééããŠé€é»ããŠãã衚é¢é»äœã¯0Vã«è¿ãå€ãšãªããŸãã(ãã ããããªã垯é»ããé»è·Qã倧ãããããšãèããŠã衚é¢é»äœã¯äžãããŸã)ã
垯é»å°äœâå°äœâGNDã®å Žå
次ã¯ãç©äœã2ã€ãããšãã«ã€ããŠã§ãããã®ãããªå³ã®å Žåãæ³å®ããŸãã
å°äœ1ã®åããt1ãå°äœ2ã®åããt3ãå°äœ1ãšå°äœ2ã®è·é¢ãd2ãå°äœ2ãšGNDãšã®è·é¢ãd4ãšããŸãããã®æãå°äœ1ã®è¡šé¢é»äœã¯çãããããVS1ïŒVS2ãšãªããŸãããŸãå°äœ2ã®è¡šé¢é»äœãçãããããVS3ïŒVS4ãšãªããŸãã
å°äœ2ã¯åž¯é»å°äœ1ãšåãæ¥µæ§ã®é»äœãæã¡ãŸããå°äœ2ã®è¡šé¢é»äœVS3, VS4ã¯ã垯é»å°äœ1ãšå°äœ2ã®éé»å®¹éCD2ãšå°äœïŒã®å¯Ÿå°éé»å®¹éCD4ã§åž¯é»å°äœ1ã®è¡šé¢é»äœVS1, VS2ãåå§ããå€ãšãªããŸããããªãã¡
$$ V_{S3} = V_{S4} = \frac{\frac{1}{ C_{D4}}}{\frac{1}{ C_{D2}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{d_4}{{d_2}+{d_4}} V_{S1}$$
ãšãªããŸããäŸãšããŠå°äœ1ã®è¡šé¢é»äœVS1, VS2ã1000Vãç©äœã®åããt1= t3=50cmãd2ãšd4ã®è·é¢ã®åã100cmã®æã«å°äœ2ãäžäžã«ç§»åãããæã®å衚é¢é»äœãã°ã©ãã«ç€ºããŸãããã®ããã«ã垯é»ç©äœãšã®è·é¢ã0cmã®æãå°äœ2ã®è¡šé¢é»äœVS3, VS4ã1000Vã§ãããããããç·åœ¢çã«æžå°ããŠããããšãããããŸãã100cmã®æãããªãã¡GNDã«æ¥ç¶ããããšãã¯ãã¡ãã衚é¢é»äœVS3, VS4ã¯50cmãšãªããŸãã
垯é»å°äœâçµ¶çžäœâGNDã®å Žå
äžå¿ã®ç©äœãçµ¶çžäœã®å Žåã§ããããã¯ãã®ãããªå³ã«ãªããŸãã
å°äœ1ã®åããt1ãçµ¶çžäœ2ã®åããt3ãå°äœ1ãšçµ¶çžäœ2ã®è·é¢ãd2ãçµ¶çžäœ2ãšGNDãšã®è·é¢ãd4ãšããŸãããã®æãå°äœ1ã®è¡šé¢é»äœã¯çãããããVS1ïŒVS2ãšãªããŸãã
çµ¶çžäœ2ã¯åž¯é»å°äœ1ãšåãæ¥µæ§ã®é»äœãæã¡ãŸããçµ¶çžäœ2ã®è¡šé¢é»äœVS3ã¯ã垯é»å°äœ1ãšçµ¶çžäœ2ã®éé»å®¹éCD2ãšçµ¶çžäœ2å
éšã®éé»å®¹éCI3ãçµ¶çžäœïŒã®å¯Ÿå°éé»å®¹éCD4ã®åå§ãšãªãããã
$$ V_{S3} = \frac{\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}}{\frac{1}{ C_{D2}}+\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{{\frac{t_3}{\varepsilon_r}}+{d_4}}{{d_2}+{\frac{t_3}{\varepsilon_r}}+{d_4}} V_{S1}$$
åæ§ã«ãçµ¶çžäœ2ã®è¡šé¢é»äœVS4ã¯
$$ V_{S4} = \frac{\frac{1}{ C_{D4}}}{\frac{1}{ C_{D2}}+\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{d_4}{{d_2}+{\frac{t_3}{\varepsilon_r}}+{d_4}} V_{S1}$$
ãšãªããŸããäŸãšããŠå°äœ1ã®è¡šé¢é»äœVS1, VS2ã1000Vãç©äœã®åããt1= t3=50cmãd2ãšd4ã®è·é¢ã®åã100cmã®æã«çµ¶çžäœ2ãäžäžã«ç§»åãããæã®å衚é¢é»äœãã°ã©ãã«ç€ºããŸãããã®ããã«ã垯é»ç©äœãšã®è·é¢ã0cmã®æãçµ¶çžäœ2ã®è¡šé¢é»äœVS3ã1000VãšãªããŸããããããç·åœ¢çã«æžå°ããŠããããšãããããŸãããŸããçµ¶çžäœ2ã§çããé»äœå·®VS3- VS4ãäžå®ã§ããããšãèªã¿åããŸãã
垯é»çµ¶çžäœâå°äœâGNDã®å Žå
äžéšãçµ¶çžäœã§äžå¿ã®ç©äœãå°äœã®å Žåã§ããããã¯ãã®ãããªå³ã«ãªããŸãã
çµ¶çžäœ1ã®åããt1ãå°äœ2ã®åããt3ãçµ¶çžäœ1ãšå°äœ2ã®è·é¢ãd2ãå°äœ2ãšGNDãšã®è·é¢ãd4ãšããŸãããã®æãå°äœ2ã®è¡šé¢é»äœã¯çãããããVS3ïŒVS4ãšãªããŸãã
å°äœ2ã¯åž¯é»çµ¶çžäœ1ãšåãæ¥µæ§ã®é»äœãæã¡ãŸããçµ¶çžäœ1ã®è¡šé¢é»äœVS2ã¯ãçµ¶çžäœ1å
éšã®éé»å®¹éCI1ã垯é»çµ¶çžäœ1ãšå°äœ2ã®éé»å®¹éCD2ãšå°äœïŒã®å¯Ÿå°éé»å®¹éCD4ã®åå§ãšãªãããã
$$ V_{S2} = \frac{\frac{1}{ C_{D2}}+\frac{1}{ C_{D4}}}{\frac{1}{ C_{I1}}+\frac{1}{ C_{D2}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{{d_2}+{d_4}}{{\frac{t_1}{\varepsilon_r}}+{d_2}+{d_4}} V_{S1}$$
åæ§ã«ãå°äœ2ã®è¡šé¢é»äœVS3, VS4ã¯
$$ V_{S3} = V_{S4} =\frac{\frac{1}{ C_{D4}}}{\frac{1}{ C_{I1}}+\frac{1}{ C_{D2}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{{d_4}}{{\frac{t_1}{\varepsilon_r}}+{d_2}+{d_4}} V_{S1}$$
ãšãªããŸããäŸãšããŠçµ¶çžäœ1ã®è¡šé¢é»äœVS1ã1000Vãç©äœã®åããt1= t3=50cmãd2ãšd4ã®è·é¢ã®åã100cmã®æã«å°äœ2ãäžäžã«ç§»åãããæã®å衚é¢é»äœãã°ã©ãã«ç€ºããŸãã
â
垯é»çµ¶çžäœâçµ¶çžäœâGNDã®å Žå
äžéšãçµ¶çžäœã§äžå¿ã®ç©äœãçµ¶çžã®å Žåã§ãããããäžçªé£ããã§ãã
çµ¶çžäœ1ã®åããt1ãçµ¶çžäœ2ã®åããt3ãçµ¶çžäœ1ãšçµ¶çžäœ2ã®è·é¢ãd2ãå°äœ2ãšGNDãšã®è·é¢ãd4ãšããŸãã
çµ¶çžäœ2ã¯åž¯é»çµ¶çžäœ1ãšåãæ¥µæ§ã®é»äœãæã¡ãŸããçµ¶çžäœ1ã®è¡šé¢é»äœVS2ã¯ãçµ¶çžäœ1å
éšã®éé»å®¹éCI1ã垯é»çµ¶çžäœ1ãšçµ¶çžäœ2ã®éé»å®¹éCD2ãçµ¶çžäœ2å
éšã®éé»å®¹éCI3ãçµ¶çžäœïŒã®å¯Ÿå°éé»å®¹éCD4ã®åå§ãšãªãããã
$$ V_{S2} = \frac{\frac{1}{ C_{D2}}+\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}}{\frac{1}{ C_{I1}}+\frac{1}{ C_{D2}}+\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{{d_2}+{\frac{t_3}{\varepsilon_r}}+{d_4}}{{\frac{t_1}{\varepsilon_r}}+{d_2}+{\frac{t_3}{\varepsilon_r}}+{d_4}} V_{S1}$$
åæ§ã«ã
$$ V_{S3} = \frac{\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}}{\frac{1}{ C_{I1}}+\frac{1}{ C_{D2}}+\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{{\frac{t_3}{\varepsilon_r}}+{d_4}}{{\frac{t_1}{\varepsilon_r}}+{d_2}+{\frac{t_3}{\varepsilon_r}}+{d_4}} V_{S1}$$
$$ V_{S4} = \frac{\frac{1}{ C_{D4}}}{\frac{1}{ C_{I1}}+\frac{1}{ C_{D2}}+\frac{1}{ C_{I3}}+\frac{1}{ C_{D4}}} V_{S1} = \frac{{d_4}}{{\frac{t_1}{\varepsilon_r}}+{d_2}+{\frac{t_3}{\varepsilon_r}}+{d_4}} V_{S1}$$
ãšãªããŸããäŸãšããŠçµ¶çžäœ1ã®è¡šé¢é»äœVS1ã1000Vãç©äœã®åããt1= t3=50cmãd2ãšd4ã®è·é¢ã®åã100cmã®æã«çµ¶çžäœ2ãäžäžã«ç§»åãããæã®å衚é¢é»äœãã°ã©ãã«ç€ºããŸãã
ãªããçµ¶çžäœã®äœçœ®ãå€ãã£ãŠãå
šäœã®åæå®¹éã¯å€åããªããããçµ¶çžäœã®äœçœ®ãå€ããããšã§è¡šé¢é»äœãå€ããããšã¯ãããŸãããããããçµ¶çžäœãå
¥ããšå®¹éãå€åããããã衚é¢é»äœãå€ãã£ãŠããŸããŸãã
å°äœãé€é»ãããå Žå
å³ã®ããã«1000Vã«åž¯é»ããŠããå€ç«å°äœããããšããŸããå€ç«å°äœãšGNDãšã®éã«ã¯å¯Ÿå°éé»å®¹éCããããŸãã
â 垯é»ãããåŽãé€é»ããå Žå
ãã€ãã¹é»è·ããã©ã¹é»è·ã®æ¹ãžããããã©ã¹é»è·ãšãã€ãã¹é»è·ãæã¡æ¶ãåããŸãããã®çµæãGNDã«ååšããŠãããã€ãã¹é»è·ã¯ãã©ã¹é»è·ã«ãã£ãŠçããŠããã¯ãŒãã³åã«ããåŒåã倱ããGNDã«æµããŸããæçµçã«å°äœãšGNDéã«ååšãã察å°éé»å®¹éã«èããããŠããé»è·ããªããªãã0VãšãªããŸãã
â 垯é»ãããŠãªãåŽãé€é»ããå Žå
å°äœã¯é»åãèªç±ã«ç§»åã§ããããã垯é»ãããŠããªãè£åŽãé€é»ããŠãé€é»ãå¯èœã§ãã
çµ¶çžäœãé€é»ãããå Žå
å³ã®ããã«1000Vã«åž¯é»ããŠããå€ç«å°äœããããšããŸããå€ç«çµ¶çžäœãšGNDãšã®éã«ã¯å¯Ÿå°éé»å®¹éCããããŸããçµ¶çžäœã¯é»å Žãéãããé»äœå·®ãååšããŸãã垯é»ãããæãçµ¶çžäœã®äžé¢ã1000Vãçµ¶çžäœã®äžé¢ã800Vã ã£ãå Žåã察å°éé»å®¹éãCãšãããšãçµ¶çžäœã®éé»å®¹éã¯4CãšãªããŸãã
â 垯é»ãããåŽãæ¥å°ããå Žå
ãã€ãã¹é»è·ããã©ã¹é»è·ã®æ¹ãžããããã©ã¹é»è·ãšãã€ãã¹é»è·ãæã¡æ¶ãåããŸãããã®çµæãçµ¶çžäœã®éé»å®¹éãšå¯Ÿå°éé»å®¹éã«ååšããé»è·ã¯ãäºãã«æã¡æ¶ãåãæ¶å€±ããGNDã«ååšããŠãããã€ãã¹é»è·ã¯ãã©ã¹é»è·ã«ãã£ãŠçããŠããã¯ãŒãã³åã«ããåŒåã倱ããGNDã«æµããŸããæçµçã«è¡šé¢é»äœã¯ãã¹ãŠ0Vãšãªããé€é»ãæ£åžžã«å®äºããŸãã
â 垯é»ãããŠãªãåŽãé€é»ããå Žå
ãã®å Žåã¯å
šãŠã0Vã«ããããšãã§ããŸããã
詳ãã説æããŸãã垯é»ãããŠãªãåŽãé€é»ãããšããã€ãã¹é»è·ããã©ã¹é»è·ã®æ¹ãžããããšã§ããã©ã¹é»è·ãšãã€ãã¹é»è·ãæã¡æ¶ãåããŸã(ãã©ã¹é»è·ãåºãŠãããšãããã)ããã®çµæãGNDã«ååšããŠãããã€ãã¹é»è·ã¯ãã©ã¹é»è·ã«ãã£ãŠçããŠããã¯ãŒãã³åã«ããåŒåã倱ããGNDã«æµããŸããããããçµ¶çžäœäžé¢ã«ã¯ãŸã é»è·Qãååšãããããé€é»ããŠããã«ãé¢ããããé€é»ã§ããŠããªãæ¹ã«ã¯è¡šé¢é»äœãçŸããŸããæ¬¡ã«åž¯é»ããŠããåŽãé€é»ããŠã¿ãŸãããã®å Žåãçµ¶çžäœäžé¢ã¯0Vã«ãªããŸãããçµ¶çžäœäžé¢ã«ååšããé»è·ã¯å
šãŠé€é»ã§ããŸãããããã¯å¯Ÿå°éé»å®¹éã«ååšãããã€ãã¹é»è·ãããããã§ããé€é»ããåŽã0VãGNDã0Vã§ããã察å°éé»å®¹éã«ååšãããã€ãã¹é»è·ã¯éãå Žããªããããé»äœå·®ãçãããªãããã«é»è·ãç§»åããŸãããã®çµæãGNDã«ã¯ãã©ã¹é»è·ãçŸããŸãã
é€é»ãããªãã垯é»ããæŸçœ®ãããšã»ã»ã»
é€é»ãããªãã垯é»ããæŸçœ®ãããšãé»äœãå¢å ããŠãããããªçŸè±¡ãçããããšããããŸããäŸãã°ãã€ãªãã€ã¶ãåœãŠãŠããåæãšç°ãªãåæãæŠãã垯é»ããŠãããããªæ§æãã垯é»ãããŠããæ¹ã®å察åŽãéå±éšã§ãã®éå±éšã«è§Šããããšããããããªæ§æã§çããŸãã
ä»åãäŸãšããŠã€ãªãã€ã¶ãåœãŠãŠããåæãšå察ã®é¢ã2000Vã«åž¯é»ããŠããŸã£ãŠãããšæ³å®ããŸããçµ¶çžäœã®å®¹éã2CãšããæºãŸã£ãŠããé»è·éãQãšãããšã
$$ Q= 2CÃ2000$$
ãšãªããŸãã
ãã®ç¶æ
ã§ã€ãªãã€ã¶ãOFFããŠæŸçœ®ããããšãçµ¶çžäœäžé¢ãšäžé¢ã«ã¯å¯Ÿå°éé»å®¹éCãæ¥ç¶ãããŸãããããšãçµ¶çžäœã«ããŸã£ãŠããé»è·éQã¯ãã«ããããã®æ³åãæºããããã«ç§»åããŸããä»åãçµ¶çžäœã«æ®ãé»è·éãqãšãããšã
$$ V_1= \frac{Q-q}{C}$$
$$ V_2= \frac{q}{2C}$$
$$ V_3= \frac{ Q-q }{2C}$$
$$ V_1-V_2-V_3= 0$$
ãšãªããŸããåŒãè§£ããšã
$$ q = \frac{4}{5}Q$$
$$ V_1= V_3=800 [V]$$
$$ V_2= 1600 [V]$$
ãšãªããŸãããã®ããã«ãé€é»ãããªãã垯é»ããããã垯é»ãããåŸã«ééããæ¹åãé€é»ããçãè¡ããšã0Vã«ãªã£ãŠããé»äœãã©ãã©ãäžãã£ãŠãã£ãŠããŸãã®ã§ããã€ã¡ãŒãžã¯ãã®ãããªæãã§ãã
ä»åã®äŸã§ã¯ãæçµçã«åãŸãé»äœã800Vãš-800Vã«ãªããé»äœã®çµ¶å¯Ÿå€ãçãããªããŸãããããããããã¯å¯Ÿå°éé»å®¹éã«ãã£ãŠç°ãªããçµ¶çžäœäžé¢ãšäžé¢ã®å¯Ÿå°éé»å®¹éãç°ãªã£ãŠããå Žåã§ã¯é»äœã®çµ¶å¯Ÿå€ã¯çãããªããŸããã