ãã®èšäºã§ã¯ãç察æ°ã°ã©ãããšã䞡察æ°ã°ã©ããã«ã€ããŠ
- 察æ°ã°ã©ãã®çš®é¡
- ãç察æ°ã°ã©ãããšã¯
- ãç察æ°ã°ã©ãããšãææ°é¢æ°ãã®é¢ä¿
- ã䞡察æ°ã°ã©ãããšã¯
- ã䞡察æ°ã°ã©ãããšãã¹ã颿°ãã®é¢ä¿
ãªã©ãå³ãçšããŠåããããã説æããŠããŸãã
ãŸãæåã«ã»ã»ã»æ®éã®ç®çãšå¯Ÿæ°ç®çã«ã€ããŠ
äžè¬çã«ããèŠãããç®çã¯2ç¹éã®è·é¢ã0,1,2,3,4,5ã»ã»ã»ã®ããã«æ°ã1ãã€å¢ãããã0,10,20,30,40,50ã»ã»ã»ã®ããã«æ°ã«10ãã€å¢ããããããããªç®çãšãªã£ãŠããŸã(ãã®èšäºã¯ãã®ç®çãæ®éã®ç®çãšåŒã³ãŸã)ã
äžæ¹ã2ç¹éã®è·é¢ã0.001,0.01,0.1,1,10,100ã»ã»ã»ã®ããã«æ°ã10åãã€å¢ããããããããªç®çã察æ°ç®çãšèšããŸãã察æ°ç®çã¯1ã€åŸã®ç®çããåºããªãã1ã€åã®ç®çããçããªã£ãŠããç®æãç®çãã®ééãšãªã£ãŠããŸãã芪åãªã°ã©ãã®å Žåããã®ç®çã®ééã®ç®æã倪ç·ã«ãªã£ãŠããŸãã
察æ°ã°ã©ãã®çš®é¡(ç察æ°ã°ã©ããšäž¡å¯Ÿæ°ã°ã©ãã«ã€ããŠ)
x軞ãy軞ã察æ°ç®çãšãªã£ãŠããã°ã©ãã®ããšã察æ°ã°ã©ããšãããŸãã察æ°ã°ã©ãã«ã¯ç察æ°ã°ã©ããšäž¡å¯Ÿæ°ã°ã©ãã®2çš®é¡ãããŸãã
- ç察æ°ã°ã©ã
- 䞡察æ°ã°ã©ã
ç察æ°ã°ã©ããšã¯ããxè»žïŒæ®éã®ç®çãy軞ïŒå¯Ÿæ°ç®çãããx軞ïŒå¯Ÿæ°ç®çãyè»žïŒæ®éã®ç®çãã®ããã«x軞ãŸãã¯y軞ã®çæ¹ã察æ°ç®çãšãªã£ãŠããã°ã©ãã®ããšãæããŸããç察æ°ã°ã©ãã¯è±èªã§ã¯ãSemi-Log PlotããŸãã¯ãSemi-Log GraphããšæžããŸãã
䞡察æ°ã°ã©ããšã¯ããx軞ïŒå¯Ÿæ°ç®çãy軞ïŒå¯Ÿæ°ç®çãã®ããã«x軞ãšy軞ã®äž¡æ¹ã察æ°ç®çãšãªã£ãŠããã°ã©ãã®ããšãæããŸãã䞡察æ°ã°ã©ãã¯è±èªã§ã¯ãLog-Log PlotããŸãã¯ãLog-Log GraphããšæžããŸãã
è£è¶³
- ãx軞ïŒå¯Ÿæ°ç®çãyè»žïŒæ®éã®ç®çãã®ç察æ°ã°ã©ãã¯ããŸãèŠãããŸããã
- ãxè»žïŒæ®éã®ç®çãyè»žïŒæ®éã®ç®çãã®ã°ã©ãã®ããšãæ¹çŒã°ã©ããšãããŸãã
ç察æ°ã°ã©ããšææ°é¢æ°ã®é¢ä¿
ç察æ°ã°ã©ãã§ææ°é¢æ°\((y=ca^x)\)ãæããšçŽç·ãšãªã
äžå³ã®ææ°é¢æ° \(y=ca^x(c>0,a>0)\)ã¯ç察æ°ã°ã©ãã§æããšçŽç·ã«ããŸã瞊軞ã\({\log}_{10}y\)ãšããŠãçŽç·ã«ãªããŸã(çŽç·ã«ãªãçç±ã¯åŸã»ã©è©³ãã説æããŸã)ã
- ãxè»žïŒæ®éã®ç®çãy軞ïŒå¯Ÿæ°ç®çãã®ç察æ°ã°ã©ãã®å Žå
- ãxè»žïŒæ®éã®ç®çãyè»žïŒæ®éã®ç®çãã®æ¹çŒã°ã©ãã®å Žå
çŽç·\((y=Ax+c)\)ã«ãªããŸãã
瞊軞ã\({\log}_{10}y\)ã«ãããšãçŽç·\(({\log}_{10}y=Ax+{\log}_{10}c)\)ãšãªããŸã
ææ°é¢æ°\((y=ca^x)\)ã®\(a\)ãš\(c\)ã®æ±ãæ¹
ãŸããçŽç·\((y=Ax+c)\)ã®åŸã\(A\)ãæ±ãã\(A\)
çŽç·\((y=Ax+c)\)ã®2ç¹\((x_1,y_1)\),\((x_2,y_2)\)ãçµãã æã®åŸã\(A\)ã¯ä»¥äžã®åŒã§æ±ããããšãã§ããŸãã
\begin{eqnarray}
A=\frac{{\log}_{10}y_2-{\log}_{10}y_1}{x_2-x_1}
\end{eqnarray}
ææ°é¢æ°\(y=ca^x\)ã®åº\(a\)ãæ±ãã
çŽç·\((y=Ax+c)\)ã®åŸã\(A\)ãåãããšãææ°é¢æ°\(y=ca^x\)ã®åº\(a\)ã¯ä»¥äžã®åŒã§æ±ããããšãã§ããŸãã
\begin{eqnarray}
a=10^A
\end{eqnarray}
ææ°é¢æ°\(y=ca^x\)ã®\(c\)ãæ±ãã
ææ°é¢æ°\((y=ca^x)\)ã®\(c\)ã¯ãxè»žïŒæ®éã®ç®çãy軞ïŒå¯Ÿæ°ç®çãã®ç察æ°ã°ã©ãã«ãããåç\(c\)ãšçãããªããŸãã
ææ°é¢æ°ãç察æ°ã°ã©ãã§çŽç·ã«ãªãçç±
ãxè»žïŒæ®éã®ç®çãy軞ïŒå¯Ÿæ°ç®çãã®ç察æ°ã°ã©ãã«ã€ããŠã
- ææ°é¢æ°\((y=ca^x)\)ã¯ç察æ°ã°ã©ãã§ã¯çŽç·\((y=Ax+c)\)ã«ãªãçç±
- ææ°é¢æ°\((y=ca^x)\)ã®åº\(a\)ã¯\(a=10^A\)ã§æ±ããããšãã§ããçç±
- ææ°é¢æ°\((y=ca^x)\)ã®\(c\)ã¯ç察æ°ã°ã©ãã«ãããåç\(c\)ãšçãããªãçç±
ã説æããŸãã
ææ°é¢æ°\((y=ca^x)\)ã®äž¡èŸºã«\({\log}_{10}\)ãäœçšããããšã
\begin{eqnarray}
{\log}_{10}y={\log}_{10}ca^x
\end{eqnarray}
ãšãªããŸããå³èŸºãåè§£ãããšã
\begin{eqnarray}
{\log}_{10}y&=&{\log}_{10}a^x+{\log}_{10}c\\
{\Leftrightarrow}{\log}_{10}y&=&x{\log}_{10}a+{\log}_{10}c
\end{eqnarray}
ãšãªããŸãã
ããã§ã
\begin{eqnarray}
{\log}_{10}a=A
\end{eqnarray}
ãšçœ®ããšã
\begin{eqnarray}
{\log}_{10}y&=&Ax+{\log}_{10}c
\end{eqnarray}
ãšãªããŸããäžèšã®åŒãæ¹çŒã°ã©ãã§æããšãçŽç·ãšãªããŸãã
ãŸããç察æ°ã°ã©ãã«ãããããããšããããšã¯ãæ¹çŒã°ã©ãã§ã¯\({\log}_{10}y\)ã瞊軞ã«ãšãããšãšçãããããç察æ°ã°ã©ãã®å Žåã¯ä»¥äžã®åŒãšãªããŸãã
\begin{eqnarray}
y&=&Ax+c
\end{eqnarray}
äžåŒã¯çŽç·ã®åŒã§ããããšãåãããŸãã
ãŸããçŽç·\((y=Ax+c)\)ã®2ç¹\((x_1,y_1)\),\((x_2,y_2)\)ãçµãã æã®åŸã\(A\)ã¯
\begin{eqnarray}
A=\frac{{\log}_{10}y_2-{\log}_{10}y_1}{x_2-x_1}
\end{eqnarray}
ãšãªããŸããããã§ã\({\log}_{10}a=A\)ãå€åœ¢ãããšã
\begin{eqnarray}
a=10^A
\end{eqnarray}
ãšãªããŸãã
ãããã£ãŠãææ°é¢æ°\(y=ca^x\)ã®åº\(a\)ã¯äžåŒã§æ±ããããšãã§ããŸãã
ãŸããçŽç·\((y=Ax+c)\)ãããææ°é¢æ°\((y=ca^x)\)ã®\(c\)ã¯åç\(c\)ãšçãããªãããšãããããŸããâ
䞡察æ°ã°ã©ããšã¹ã颿°ã®é¢ä¿
䞡察æ°ã°ã©ãã§ã¹ã颿°\((y=cx^a)\)ãæããšçŽç·ãšãªã
äžå³ã®ã¹ã颿°\(y=cx^a(a>0)\)ã¯äž¡å¯Ÿæ°ã°ã©ãã§æããšçŽç·ã«ããŸã瞊軞ã\({\log}_{10}y\)ãæšªè»žã\({\log}_{10}x\)ã«ããŠãçŽç·ã«ãªããŸã(çŽç·ã«ãªãçç±ã¯åŸã»ã©è©³ãã説æããŸã)ã
- ãx軞ïŒå¯Ÿæ°ç®çãy軞ïŒå¯Ÿæ°ç®çãã®äž¡å¯Ÿæ°ã°ã©ãã®å Žå
- ãxè»žïŒæ®éã®ç®çãyè»žïŒæ®éã®ç®çãã®æ¹çŒã°ã©ãã®å Žå
çŽç·\((y=ax+c)\)ã«ãªããŸãã
瞊軞ã\({\log}_{10}y\)ãæšªè»žã\({\log}_{10}x\)ã«ãããšãçŽç·\(({\log}_{10}y=A{\log}_{10}x+{\log}_{10}c)\)ãšãªããŸãã
ã¹ã颿°\((y=cx^a)\)ã®\(a\)ãš\(c\)ã®æ±ãæ¹
ãŸããçŽç·\((y=ax+c)\)ã®åŸã\(a\)ãæ±ãã\(A\)
çŽç·\((y=ax+c)\)ã®2ç¹\((x_1,y_1)\),\((x_2,y_2)\)ãçµãã æã®åŸã\(a\)ã¯ä»¥äžã®åŒã§æ±ããããšãã§ããŸã
\begin{eqnarray}
a=\frac{{\log}_{10}y_2-{\log}_{10}y_1}{{\log}_{10}x_2-{\log}_{10}x_1}
\end{eqnarray}
ã¹ã颿°\((y=cx^a)\)ã®ã¹ã\(a\)ãæ±ãã
ã¹ã颿°\((y=cx^a)\)ã®ã¹ã\(a\)ã¯çŽç·ã®åŸã\(a\)ãšçãããªããŸãã
ã¹ã颿°\((y=cx^a)\)ã®\(c\)ãæ±ãã
ã¹ã颿°\((y=cx^a)\)ã®\(c\)ã¯ãx軞ïŒå¯Ÿæ°ç®çãy軞ïŒå¯Ÿæ°ç®çãã®äž¡å¯Ÿæ°ã°ã©ãã«ãããåç\(c\)ãšçãããªããŸãã
ã¹ã颿°ã䞡察æ°ã°ã©ãã§çŽç·ã«ãªãçç±
ãx軞ïŒå¯Ÿæ°ç®çãy軞ïŒå¯Ÿæ°ç®çãã®äž¡å¯Ÿæ°ã°ã©ãã«ã€ããŠã
- ã¹ã颿°\((y=cx^a)\)ã¯äž¡å¯Ÿæ°ã°ã©ãã§ã¯çŽç·\((y=ax+c)\)ã«ãªãçç±
- ã¹ã颿°\((y=cx^a)\)ã®ã¹ã\(a\)ã¯çŽç·\((y=ax+c)\)ã®åŸã\(a\)ãšçãããªãçç±
- ã¹ã颿°\((y=cx^a)\)ã®\(c\)ã¯äž¡å¯Ÿæ°ã°ã©ãã«ãããåç\(c\)ãšçãããªãçç±
ã説æããŸãã
ã¹ã颿°\((y=cx^a)\)ã®äž¡èŸºã«\({\log}_{10}\)ãäœçšããããšã
\begin{eqnarray}
{\log}_{10}y={\log}_{10}cx^a
\end{eqnarray}
ãšãªããŸããå³èŸºãåè§£ãããšã
\begin{eqnarray}
{\log}_{10}y&=&{\log}_{10}x^a+{\log}_{10}c\\
{\Leftrightarrow}{\log}_{10}y&=&a{\log}_{10}x+{\log}_{10}c
\end{eqnarray}
ãšãªããŸãã
äžèšã®åŒãæ¹çŒã°ã©ãã§æããšãçŽç·ãšãªããŸãã
ãŸãã䞡察æ°ã°ã©ãã«ãããããããšããããšã¯ãæ¹çŒã°ã©ãã§ã¯\({\log}_{10}y\)ã瞊軞ã«ã\({\log}_{10}x\)ãæšªè»žã«ãšãããšãšçããããã䞡察æ°ã°ã©ãã®å Žåã¯ä»¥äžã®åŒãšãªããŸãã
\begin{eqnarray}
y&=&ax+c
\end{eqnarray}
äžåŒã¯çŽç·ã®åŒãšãªãããšãåãããŸãã
ããã§ãã¹ã颿°\((y=cx^a)\)ã¯äž¡å¯Ÿæ°ã°ã©ãã§ã¯çŽç·\((y=ax+c)\)ã«ãªãããã
ã¹ã颿°\((y=cx^a)\)ã®ã¹ã\(a\)ã¯çŽç·\((y=ax+c)\)ã®åŸã\(a\)ãšçãããªãããšãåãããŸãããŸããã¹ã颿°\((y=cx^a)\)ã®\(c\)ã¯äž¡å¯Ÿæ°ã°ã©ãã«ãããåç\(c\)ãšçãããªãããšãåãããŸãã
ãŸããçŽç·\((y=ax+c\)ã®2ç¹\((x_1,y_1)\),\((x_2,y_2)\)ãçµãã æã®åŸãaã¯
\begin{eqnarray}
a=\frac{{\log}_{10}y_2-{\log}_{10}y_1}{{\log}_{10}x_2-{\log}_{10}x_1}
\end{eqnarray}
ãšãªããŸãã
ãŸãšã
ãã®èšäºã§ã¯ãç察æ°ã°ã©ãããšã䞡察æ°ã°ã©ããã«ã€ããŠã以äžã®å
容ã説æããŸããã
åœèšäºã®ãŸãšã
- ææ°é¢æ°\((y=ca^x)\)ã¯ç察æ°ã°ã©ãã§ã¯çŽç·\((y=Ax+c)\)ã«ãªã
- ææ°é¢æ°\((y=ca^x)\)ã®åº\(a\)ã¯\(a=10^A\)ã§æ±ããããšãã§ãã
- ææ°é¢æ°\((y=ca^x)\)ã®\(c\)ã¯ç察æ°ã°ã©ãã«ãããåç\(c\)ãšçãããªã
- ã¹ã颿°\((y=cx^a)\)ã¯äž¡å¯Ÿæ°ã°ã©ãã§ã¯çŽç·\((y=ax+c)\)ã«ãªã
- ã¹ã颿°\((y=cx^a)\)ã®ã¹ã\(a\)ã¯çŽç·\((y=ax+c)\)ã®åŸã\(a\)ãšçãããªã
- ã¹ã颿°\((y=cx^a)\)ã®\(c\)ã¯äž¡å¯Ÿæ°ã°ã©ãã«ãããåç\(c\)ãšçãããªã
ãèªã¿é ãããããšãããããŸããã
åœãµã€ãã§ã¯é»æ°ã«é¢ããæ§ã
ãªæ
å ±ãèšèŒããŠããŸããåœãµã€ãã®å
šèšäºäžèЧã«ã¯ä»¥äžã®ãã¿ã³ããç§»åããããšãã§ããŸãã